Size-controllable covalent organic frameworks with high NIR absorption for targeted delivery of glucose oxidase

2021 ◽  
pp. 117896
Author(s):  
Kai Zhao ◽  
Peiwei Gong ◽  
Shaohua Song ◽  
Juan Li ◽  
Jingyi Peng ◽  
...  
2021 ◽  
Author(s):  
Ruoyang Liu ◽  
Ke Tian Tan ◽  
Yifan Gong ◽  
Yongzhi Chen ◽  
Zhuoer Li ◽  
...  

Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Sharma Pankaj ◽  
Tailang Mukul

The aim of present work was to prepare colon specific delivery system of Ornidazole using different ratio of shellac, zein and guar gum. From study of various literature it revealed that shellac, zein and guar gum released drug from dosage form at the pH of 6.9, 11.5, 7-9 respectively. The main problem associated with colon targeted drug delivery system is degradation of drug in the acidic environment of stomach to circumvent the present problem different combinations of shellac, zein and guar gum were employed in the formulation of colon targeted tablet. Several preformulation parameters were determined such as melting point, FTIR spectroscopy, preparation of calibration curve, determination of λmax and partition coefficient. After the preformulation studies, next steps were preparation of core tablets, evaluation of core of tablets and coating of tablets. The data obtained from preformulation study seven formulations were developed and evaluated for various parameters. Based on evaluated parameter such as weight variation, friability, dissolution study, invitro drug release etc. the F7 formulation show better results colon targeted tablets. Drug content in F7 formulation was 95% and drug release after 6 hrs was 96%. Formulation containing combination of shellac, zein and guar gum released least amount of drug in the acidic environment of stomach and released most of the drug in colon. It is evide


2020 ◽  
Author(s):  
Xizheng Sun ◽  
Reika Tokunaga ◽  
Yoko Nagai ◽  
Ryo Miyahara ◽  
Akihiro Kishimura ◽  
...  

<p><a></a><a></a><a>We have validated that ligand peptides designed from antigen peptides could be used for targeting specific major histocompatibility complex class I (MHC-I)</a> molecules on cell surface. To design the ligand peptides, we used reported antigen peptides for each MHC-I molecule with high binding affinity. From the crystal structure of the peptide/MHC-I complexes, we determined a modifiable residue in the antigen peptides and replaced this residue with a lysine with an ε-amine group modified with functional molecules. The designed ligand peptides successfully bound to cells expressing the corresponding MHC-I molecules via exchange of peptides bound to the MHC-I. We demonstrated that the peptide ligands could be used to transport a protein or a liposome to cells expressing the corresponding MHC-I. The present strategy may be useful for targeted delivery to cells overexpressing MHC-I, which have been observed autoimmune diseases.</p>


2018 ◽  
Author(s):  
James Leighton ◽  
Linda M. Suen ◽  
Makeda A. Tekle-Smith ◽  
Kevin S. Williamson ◽  
Joshua R. Infantine ◽  
...  

With an average GI50 value against the NCI panel of 60 human cancer cell lines of 0.12 nM, spongistatin 1 is among the most potent anti-proliferative agents ever discovered rendering it an attractive candidate for development as a payload for antibody-drug conjugates and other targeted delivery approaches. It is unavailable from natural sources and its size and complex stereostructure render chemical synthesis highly time- and resource-intensive, however, and its development requires more efficient and step-economical synthetic access. Using novel and uniquely enabling direct complex fragment coupling alkallyl- and crotylsilylation reactions, we have developed a 22-step synthesis of a rationally designed D-ring modified analog of spongistatin 1 that is equipotent with the natural product, and have used that synthesis to establish that the C(15) acetate may be replaced with a linker functional group-bearing ester with only minimal reductions in potency.<br><div><br></div>


2018 ◽  
Author(s):  
Srimanta Pakhira ◽  
Jose Mendoza-Cortes

<div>Covalent organic frameworks (COFs) have emerged as an important class of nano-porous crystalline materials with many potential applications. They are intriguing platforms for the design of porous skeletons with special functionality at the molecular level. However, despite their extraordinary properties, it is difficult to control their electronic properties, thus hindering the potential implementation in electronic devices. A new form of nanoporous material, COFs intercalated with first row transition metal is proposed to address this fundamental drawback - the lack of electronic tunability. Using first-principles calculations, we have designed 31 new COF materials <i>in-silico</i> by intercalating all of the first row transition metals (TMs) with boroxine-linked and triazine-linked COFs: COF-TM-x (where TM=Sc-Zn and x=3-5). This is a significant addition considering that only 187 experimentally COFs structures has been reported and characterized so far. We have investigated their structure and electronic properties. Specifically, we predict that COF's band gap and density of states (DOSs) can be controlled by intercalating first row transition metal atoms (TM: Sc - Zn) and fine tuned by the concentration of TMs. We also found that the $d$-subshell electron density of the TMs plays the main role in determining the electronic properties of the COFs. Thus intercalated-COFs provide a new strategy to control the electronic properties of materials within a porous network. This work opens up new avenues for the design of TM-intercalated materials with promising future applications in nanoporous electronic devices, where a high surface area coupled with fine-tuned electronic properties are desired.</div>


Sign in / Sign up

Export Citation Format

Share Document