DNA Damage Repair Deficiency and Synthetic Lethality for Cancer Treatment

2021 ◽  
Vol 27 (1) ◽  
pp. 91-92
Author(s):  
Susanne Burdak-Rothkamm ◽  
Kai Rothkamm
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ruixue Huang ◽  
Ping-Kun Zhou

AbstractGenomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells’ DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists’ findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely “environmental gear selection” to describe DNA damage repair pathway evolution, and “DNA damage baseline drift”, which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.


2021 ◽  
Vol 21 ◽  
Author(s):  
Kenneth Omabe ◽  
Sandra Uduituma ◽  
David Igwe ◽  
Maxwell Omabe

: Therapy resistance remains the major obstacle to successful cancer treatment. Epithelial-to- mesenchymal transition [EMT], a cellular reprogramming process involved in embryogenesis and organ development and regulated by a number of transcriptional factors [EMT-TFs] such as ZEB1/2, is recognized for its role in tumor progression and metastasis. Recently, a growing body of evidence has implicated EMT in cancer therapy resistance but the actual mechanism that underlie this finding has remained elusive. For example, whether it is, the EMT states in itself or the EMT-TFs that modulates chemo or radio-resistance in cancer is still contentious. Here, we summarise the molecular mechanisms of EMT program and chemotherapeutic resistance in cancer with specific reference to DNA damage response [DDR]. We provide an insight into the molecular interplay that exist between EMT program and DNA repair machinery in cancer and how this interaction influences therapeutic response. We review conflicting studies linking EMT and drug resistance via the DNA damage repair axis. We draw scientific evidence demonstrating how several molecular signalling, including EMT-TFs work in operational harmony to induce EMT and confer stemness properties on the EMT-susceptible cells. We highlight the role of enhanced DNA damage repair system associated with EMT-derived stem cell-like states in promoting therapy resistance and suggest a multi-targeting modality in combating cancer treatment resistance.


2015 ◽  
Vol 14 (10) ◽  
pp. 2321-2331 ◽  
Author(s):  
Adrian P. Wiegmans ◽  
Pei-Yi Yap ◽  
Ambber Ward ◽  
Yi Chieh Lim ◽  
Kum Kum Khanna

2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 389-389
Author(s):  
Erkut Hasan Borazanci ◽  
Carol Guarnieri ◽  
Susan Haag ◽  
Ronald Lee Korn ◽  
Courtney Edwards Snyder ◽  
...  

389 Background: Molecular analysis has revealed four subtypes of PC giving clinicians further insight into treating this deadly disease. One subtype that was elucidated termed “unstable” is significant for the presence of DNA damage repair deficiency and can be targeted therapeutically. One such therapy, O, from the drug class poly ADP ribose polymerase (PARP) inhibitors, has already been FDA approved for individuals with BRCA mutated ovarian cancers. We performed a retrospective analysis on patients with PC treated at a single institution who have DNA damage repair deficiency mutations and have been treated with O. Methods: A chart review identified pancreatic cancer patients with DNA repair pathway mutations who were treated with O. The primary objective examined ORR in patients with PC with DNA repair mutations receiving O. Secondary objectives included tolerability, overall survival (OS), CA 19-9 change, and changes in quantitative textural analysis (QTA) on CT. Results: 11 individuals were identified, 5 carriers of a pathogenic germline (g) BRCA2 mutation, 1 carrier of a pathogenic g ATM mutation, 1 carrier of a pathogenic g BRCA1 mutation. Variants of uncertain significance (VUS) included 1 g ATM mutation, 1 g PALB2 mutation, 1 somatic (s) C11orf30 mutation, and 1 s BRCA2 mutation. Median age at diagnosis was 59, with 4 M and 7 F. No patients met criteria for familial PC and 7 had a family history consistent for breast and ovarian cancer syndrome. All individuals had metastatic PC and had progressed on at least 1 line of systemic therapy. ORR was 18%. Median time of therapy on O was 5 months (mo) (Range 1.4 to 29.567 mo) with 5 of the individuals still undergoing treatment at the time of analysis. Mean OS was 12.35 mo, 9 of the 11 individuals still alive. QTA of baseline CTs from subjects with liver (8/11) and pancreatic tumors (7/11) revealed a strong association between lesion texture and OS (Pearson correlation coefficient (PCC): hepatic mets = 0.952, p = 0.0003) and time on O (PCC: panc lesions = 0.889, p = 0.006). Conclusions: In individuals with metastatic PC with mutations involved in DNA repair, O may provide clinical benefit. QTA of individual tumors may allow for additional information that predicts outcomes to PARP inhibitors in this population.


2010 ◽  
Vol 999 (999) ◽  
pp. 1-5
Author(s):  
Benjamin J. Moeller ◽  
Wadih Arap ◽  
Renata Pasqualini

2018 ◽  
Author(s):  
Folake A. Orafidiya ◽  
Catherine Davidson ◽  
Richard D. Wilkinson ◽  
Steve M. Walker ◽  
Laura A. Knight ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2812-2812
Author(s):  
Clare Crean ◽  
Kienan I Savage ◽  
Ken I Mills

Abstract Acute Myeloid Leukemia (AML) is most commonly seen in people over the age of 65 and has a median age of 63. Globally there is an increasingly elderly population so the rate of incidence of AML is set to increase. The therapy landscape for AML has changed little over the past four decades. Cytarabine, first approved in 1969, is still the standard of care induction therapy for AML. There has been only modest improvements in survival rates during this time and there is currently no method of determining which patients will or will not respond to Cytarabine treatment. An assay, developed in 2014, used microarray data to determine which breast cancer patients had a DNA Damage Repair Deficiency (DDRD) and therefore would be more susceptible to DNA damaging agents. A negative DDRD (DDRD-) score predicts that patients do not to have a DNA Repair Deficiency whilst patients with a positive DDRD (DDRD+) score are predicted to have a DNA Repair Deficiency. This assay has been adapted to different solid cancer types such as ovarian and oesophageal cancer. This project has assessed the potential of using the DDRD assay for AML patients. The assay was applied to publically available microarray data of >600 AML patients (TCGA AML data &GSE6891), who were classed as DDRD- or DDRD+. Excluding patients not treated with Cytarabine, this left 639 patients, 405 DDRD+ and 234 DDRD-. Kaplan Meier analysis showed the DDRD+ patients survived significantly (p=0.00047) worse than the DDRD- cohort. Whole exome sequencing was available for 183 patients (131 DDRD+) and the mutations associated with each group were identified. As the DDRD+ patients had the worst outcome, we focused on group. The list of genes more commonly mutated in the DDRD+ patients (>2 instances and >50% occurring in this group) were subjected to pathway analysis. Deregulated pathways included "leukemogenisis" and "cell proliferation and regulation"; however, the most deregulated pathway was "metabolism of nucleobase containing compounds". As Cytarabine is a nucleobase-containing compound, this is potentially a contributing factor as to why these patients responded poorly to this treatment. The assay was applied to microarray data of a panel of myeloid cell lines, and DDRD-(NB4 & SKM1) and a DDRD+(HL-60) cell line were chosen as experimental models. Clonogenic assays, used to analyse the effect of Cytarabine on these cell lines, showed that the DDRD- cell lines were more sensitive with a lower colony growth rate than the DDRD+cell line. DNA damage induction and repair, following cytarabine treatment or 2gy radiation, were measured using RAD51 foci counts. Whilst foci counts were high in all cell lines 2hrs and 4hrs following radiation, the DDRD+ cell line continued to show high levels after 24hrs whereas the levels in the DDRD- cell lines returned to a basal level. RAD51 response to radiation treatment showed that a repair defect is present in DDRD+ cells as they fail to repair the damage induced by radiation. Following treatment with Cytarabine however, few foci were seen in the DDRD+ cell line 2hrs, 4hrs or 24hrs following treatment whereas the DDRD- cell lines responded in a similar fashion to radiation treatment. That RAD51 foci are not present following Cytarabine treatment indicates that Cytarabine fails to induce damage in these cells. The DDRD assay has shown to be an effective method for determining cellular response to Cytarabine in vivo. The non-response of the DDRD+ cell line to Cytarabine suggests that these cells do not elicit a DNA damage or an apoptotic response. This perhaps contributes to their poorer outcome and suggests that Cytarabine is not an effective treatment plan for patients deemed to be DDRD+. Although alternative induction treatment options are currently unavailable for DDRD+ AML patients, this DDRD assay could be used as a biomarker for Cytarabine response in the future. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document