scholarly journals The role of protein synthesis in cell cycling and cancer

2009 ◽  
Vol 3 (5-6) ◽  
pp. 402-408 ◽  
Author(s):  
Shai White-Gilbertson ◽  
David T. Kurtz ◽  
Christina Voelkel-Johnson
Author(s):  
Cecilia Valencia ◽  
Felipe Alonso Pérez ◽  
Carola Matus ◽  
Ricardo Felmer ◽  
María Elena Arias

Abstract The present study evaluated the mechanism by which protein synthesis inhibitors activate bovine oocytes. The aim was to analyze the dynamics of MPF and MAPKs. MII oocytes were activated with ionomycin (Io), ionomycin+anisomycin (ANY) and ionomycin+cycloheximide (CHX) and by in vitro fertilization (IVF). The expression of cyclin B1, p-CDK1, p-ERK1/2, p-JNK, and p-P38 were evaluated by immunodetection and the kinase activity of ERK1/2 was measured by enzyme assay. Evaluations at 1, 4, and 15 hours postactivation (hpa) showed that the expression of cyclin B1 was not modified by the treatments. ANY inactivated MPF by p-CDK1Thr14-Tyr15 at 4 hpa (P < 0.05), CHX increased pre-MPF (p-CDK1Thr161 and p-CDK1Thr14-Tyr15) at 1 hpa and IVF increased p-CDK1Thr14-Tyr15 at 17 hours postfertilization (hpf) (P < 0.05). ANY and CHX reduced the levels of p-ERK1/2 at 4 hpa (P < 0.05) and its activity at 4 and 1 hpa, respectively (P < 0.05). Meanwhile, IVF increased p-ERK1/2 at 6 hpf (P < 0.05); however, its kinase activity decreased at 6 hpf (P < 0.05). p-JNK in ANY, CHX, and IVF oocytes decreased at 4 hpa (P < 0.05). p-P38 was only observed at 1 hpa, with no differences between treatments. In conclusion, activation of bovine oocytes by ANY, CHX, and IVF inactivates MPF by CDK1-dependent specific phosphorylation without cyclin B1 degradation. ANY or CHX promoted this inactivation, which seemed to be more delayed in the physiological activation (IVF). Both inhibitors modulated MPF activity via an ERK1/2-independent pathway, whereas IVF activated the bovine oocytes via an ERK1/2-dependent pathway. Finally, ANY does not activate the JNK and P38 kinase pathways.


1967 ◽  
Vol 242 (4) ◽  
pp. 650-656
Author(s):  
Leonard D. Garren ◽  
A.P. Richardson ◽  
R. Michael Crocco
Keyword(s):  

Blood ◽  
1969 ◽  
Vol 34 (3) ◽  
pp. 348-356 ◽  
Author(s):  
SEYMOUR WERTHAMER ◽  
CARL HICKS ◽  
LEONARD AMARAL

Abstract The in vitro effects of sterols, cholesterol and 3-methyl cholanthrene and steroids, cortisol, prednisolone and testosterone on protein synthesis in separate popultions of human lymphocytes and leukocytes has been investigated. It has been shown that all agents used result in the inhibition of protein synthesis under these conditions. It has also been shown that the inhibitory mechanism of the steroid hormones requires the presence of plasma, presumably as a protein binding factor in order to achieve its effect. The sterol, cholesterol and 3-methyl cholanthrene, in the absence of plasma, still inhibit amino acid incorporation. However, in the case of cholesterol, the magnitude of inhibition is lower than that observed in the presence of plasma, perhaps indicating a partial plasma dependence. The results presented therefore support the hypothesis that the inhibition of lymphocyte protein synthesis by steroid hormones occurs only when the steroid is bound to a plasma protein. The physiologic role of the plasma protein-cortisol complex and its relation to the condition of lymphopenia in man is discussed.


2013 ◽  
Vol 305 (9) ◽  
pp. H1275-H1280 ◽  
Author(s):  
Yuh Fen Pung ◽  
Wai Johnn Sam ◽  
James P. Hardwick ◽  
Liya Yin ◽  
Vahagn Ohanyan ◽  
...  

Coronary collateral growth is a process involving coordination between growth factors expressed in response to ischemia and mechanical forces. Underlying this response is proliferation of vascular smooth muscle and endothelial cells, resulting in an enlargement in the caliber of arterial-arterial anastomoses, i.e., a collateral vessel, sometimes as much as an order of magnitude. An integral element of this cell proliferation is the process known as phenotypic switching in which cells of a particular phenotype, e.g., contractile vascular smooth muscle, must change their phenotype to proliferate. Phenotypic switching requires that protein synthesis occurs and different kinase signaling pathways become activated, necessitating energy to make the switch. Moreover, kinases, using ATP to phosphorylate their targets, have an energy requirement themselves. Mitochondria play a key role in the energy production that enables phenotypic switching, but under conditions where mitochondrial energy production is constrained, e.g., mitochondrial oxidative stress, this switch is impaired. In addition, we discuss the potential importance of uncoupling proteins as modulators of mitochondrial reactive oxygen species production and bioenergetics, as well as the role of AMP kinase as an energy sensor upstream of mammalian target of rapamycin, the master regulator of protein synthesis.


Zygote ◽  
2014 ◽  
Vol 23 (5) ◽  
pp. 669-682 ◽  
Author(s):  
Loredana Chierchia ◽  
Margherita Tussellino ◽  
Domenico Guarino ◽  
Rosa Carotenuto ◽  
Nadia DeMarco ◽  
...  

SummaryActin-based cytoskeleton (CSK) and microtubules may bind to RNAs and related molecules implicated in translation. However, many questions remain to be answered regarding the role of cytoskeletal components in supporting the proteins involved in steps in the maturation and translation processes. Here, we performed co-immunoprecipitation and immunofluorescence to examine the association between spectrins, keratins and tubulin and proteins involved in 60S ribosomal maturation and translation in Xenopus stage I oocytes, including ribosomal rpl10, eukaryotic initiation factor 6 (Eif6), thesaurins A/B, homologs of the eEF1α elongation factor, and P0, the ribosomal stalk protein. We found that rpl10 and eif6 cross-reacted with the actin-based CSK and with tubulin. rpl10 co-localizes with spectrin, particularly in the perinuclear region. eif6 is similarly localized. Given that upon ribosomal maturation, the insertion of rpl10 into the 60S subunit occurs simultaneously with the release of eif6, one can hypothesise that actin-based CSK and microtubules provide the necessary scaffold for the insertion/release of these two molecules and, subsequently, for eif6 transport and binding to the mature 60S subunit. P0 and thesaurins cross-reacted with only spectrin and cytokeratins. Thesaurins aggregated at the oocyte periphery, rendering this a territory favourable site for protein synthesis; the CSK may support the interaction between thesaurins and sites of the translating ribosome. Moreover, given that the assembly of the ribosome stalk, where P0 is located, to the 60S subunit is essential for the release of eif6, it can be hypothesised that the CSK can facilitate the binding of the stalk to the 60S.


Sign in / Sign up

Export Citation Format

Share Document