scholarly journals Cryptic Role of the ETHYLENE INSENSITIVE2 Nuclear Localization Signal in Ethylene Signaling

2015 ◽  
Vol 8 (8) ◽  
pp. 1129-1130 ◽  
Author(s):  
Jie Wang ◽  
Chi-Kuang Wen
2004 ◽  
Vol 85 (11) ◽  
pp. 3367-3376 ◽  
Author(s):  
K. S. Honkavuori ◽  
B. D. Pollard ◽  
M. S. Rodriguez ◽  
R. T. Hay ◽  
G. D. Kemp

Adenain, the protease produced by adenovirus, is regulated by formation of a heterodimer with an 11 aa peptide derived from the C terminus of another adenoviral protein, pVI. Here, the role of the basic motif KRRR, which is conserved in pVI sequences from human adenovirus serotypes, was investigated. It was shown that this motif is less important than the N- or C-terminal regions in the formation of the adenain–peptide heterodimer and in the activity of the subsequent complex. This motif, however, acted as a nuclear localization signal that was capable of targeting heterologous proteins to the nucleus, resulting in a distinctive intranuclear distribution consisting of discrete foci, which is similar to that found for pVI during adenovirus infection.


Oncogene ◽  
2006 ◽  
Vol 25 (25) ◽  
pp. 3537-3546 ◽  
Author(s):  
P La ◽  
A Desmond ◽  
Z Hou ◽  
A C Silva ◽  
R W Schnepp ◽  
...  

1996 ◽  
Vol 16 (10) ◽  
pp. 5444-5449 ◽  
Author(s):  
H Suyang ◽  
R Phillips ◽  
I Douglas ◽  
S Ghosh

Stimulation with inducers that cause persistent activation of NF-kappa B results in the degradation of the NF-kappa B inhibitors, I kappa B alpha and I kappa B beta. Despite the rapid resynthesis and accumulation of I kappa B alpha, NF-kappa B remains induced under these conditions. We now report that I kappa B beta is also resynthesized in stimulated cells and appears as an unphosphorylated protein. The unphosphorylated I kappa B beta forms a stable complex with NF-kappa B in the cytosol; however, this binding fails to mask the nuclear localization signal and DNA binding domain on NF-kappa B, and the I kappa B beta-NF-kappa B complex enters the nucleus. It appears therefore that during prolonged stimulation, I kappa B beta functions as a chaperone for NF-kappa B by protecting it from I kappa B alpha and allowing it to be transported to the nucleus.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Anna Kloc ◽  
Devendra K. Rai ◽  
Douglas P. Gladue ◽  
Elizabeth Schafer ◽  
Mary Kenney ◽  
...  

ABSTRACT Many RNA viruses encode a proof-reading deficient, low-fidelity RNA-dependent polymerase (RdRp), which generates genetically diverse populations that can adapt to changing environments and thwart antiviral therapies. 3Dpol, the RdRp of the foot-and-mouth disease virus (FMDV), is responsible for replication of viral genomes. The 3Dpol N terminus encodes a nuclear localization signal (NLS) sequence,MRKTKLAPT, important for import of the protein to host nucleus. Previous studies showed that substitutions at residues 18 and 20 of the NLS are defective in proper incorporation of nucleotides and RNA binding. Here, we use a systematic alanine scanning mutagenesis approach to understand the role of individual residues of the NLS in nuclear localization and nucleotide incorporation activities of 3Dpol. We identify two residues of 3Dpol NLS, T19 and L21, that are important for the maintenance of enzyme fidelity. The 3Dpol NLS alanine substitutions of T19 and L21 results in aberrant incorporation of nucleoside analogs, conferring a low fidelity phenotype of the enzyme. A molecular dynamics simulation of RNA- and mutagen (RTP)-bound 3Dpol revealed that the T19 residue participates in a hydrogen bond network, including D165 in motif F and R416 at the C terminus of the FMDV 3Dpol and RNA template-primer. Based on these findings and previous studies, we conclude that at least the first six residues of theMRKTKLAPT sequence motif play a vital role in the maintenance of faithful RNA synthesis activity (fidelity) of FMDV 3Dpol, suggesting that the role of the NLS motif in similar viral polymerases needs to be revisited. IMPORTANCE In this study, we employed genetic and molecular dynamics approaches to analyze the role of individual amino acids of the FMDV 3Dpol nuclear localization signal (NLS). The NLS residues were mutated to alanine using a type A full-genome cDNA clone, and the virus progeny was analyzed for defects in growth and in competition with the parental virus. We identified two mutants in 3Dpol, T19A and L21A, that exhibited high rate of mutation, were sensitive to nucleotide analogs, and displayed reduced replicative fitness compared to the parental virus. Using molecular dynamics simulation, we demonstrated that residues T19 and L21 played a role in the structural configuration of the interaction network at the 3Dpol palm subdomain. Cumulatively, our data suggest that the T19 and L21 3Dpol amino acids are important for maintaining the fidelity of the FMDV polymerase and ensuring faithful replication of the FMDV genome.


2017 ◽  
Vol 14 (1) ◽  
Author(s):  
Peng Liu ◽  
Shun Chen ◽  
Mingshu Wang ◽  
Anchun Cheng

2017 ◽  
Vol 28 (5) ◽  
pp. 624-633 ◽  
Author(s):  
Teruki Funabashi ◽  
Yohei Katoh ◽  
Saki Michisaka ◽  
Masaya Terada ◽  
Maho Sugawa ◽  
...  

Cilia function as cellular antennae to sense and transduce extracellular signals. A number of proteins are specifically localized in cilia. Anterograde and retrograde ciliary protein trafficking are mediated by the IFT-B and IFT-A complexes in concert with kinesin-2 and dynein-2 motors, respectively. However, the role of KIF17, a homodimeric kinesin-2 protein, in protein trafficking has not been fully understood in vertebrate cilia. In this study, we demonstrated, by using the visible immunoprecipitation assay, that KIF17 interacts with the IFT46–IFT56 dimer in the IFT-B complex through its C-terminal sequence located immediately upstream of the nuclear localization signal (NLS). We then showed that KIF17 reaches the ciliary tip independently of its motor domain and requires IFT-B binding for its entry into cilia rather than for its intraciliary trafficking. We further showed that KIF17 ciliary entry depends not only on its binding to IFT-B but also on its NLS, to which importin α proteins bind. Taking the results together, we conclude that in mammalian cells, KIF17 is dispensable for ciliogenesis and IFT-B trafficking but requires IFT-B, as well as its NLS, for its ciliary entry across the permeability barrier located at the ciliary base.


Sign in / Sign up

Export Citation Format

Share Document