Synthesis, structure, fluorescent property, and antibacterial activity of new Cd(II) metal complex based on multidentate Schiff base ligand N,N′-Bis(3-methoxysalicylidenimino)-1,3-diaminopropane

2017 ◽  
Vol 1134 ◽  
pp. 617-624 ◽  
Author(s):  
Dhrubajyoti Majumdar ◽  
Sourav Das ◽  
Jayanta Kumar Biswas ◽  
Monojit Mondal
Author(s):  
Ishaq Yahaya Lawan ◽  
Mohammed Muftahu Beli ◽  
Mohammed Adamu ◽  
Fatima Baba Isah ◽  
Maryam Abubakar

Schiff base ligand derived from glycine and benzaldehyde was synthesized together with its metal complexes (zinc and cobalt). The solubility, IR analysis and conductivity measurement were carried out. Antibacterial activities were evaluated using well-diffusion method. The bacterial assay was carried out on two pyogenic bacteria E. coli and Staphylococci and the results showed that the complexes have high antibacterial activity.


Author(s):  
B. Akila ◽  
A. Xavier

Schiff base synthesized from 2-hydroxy-1-naphthaldehyde and 2-2’ (ethylene dioxy) bis ethylenediamine (L1) and its Metal complexes, [M (II) (L)6](where M= Mn(II), Ru(III), Cu(II)and V(V) L= Schiff base moiety), have been prepared and characterized by elemental analysis, spectroscopic measurements (infrared, electronic spectroscopy, 1H-NMR, EPR and Mass spectroscopy ). Elemental analysis of the metal complexes was suggested that the stoichiometry ratio is 1:1 (metal-ligand). The electronic spectra suggest an octahedral geometry for MC1and MC2 Schiff base complexes and distorted octahedral for MC3 and MC4 complexes. The Schiff base and its metal chelates have been screened for their invitro test antibacterial activity against three bacteria, gram-positive (Staphylococcus aureus) and gram-negative (Klebsiella pheneuammonia and Salmonella typhi). Two strains of fungus (Aspergillus niger and Candida albicans). The metal chelates were shown to possess more anti fungal activity compare then antibacterial activity and antioxidant properties. The complexes are highly active than the free Schiff-base ligand.    


2013 ◽  
Vol 3 (5) ◽  
pp. 367-370 ◽  
Author(s):  
Waleed Mahmoud Al Momani ◽  
Ziyad Ahmed Taha ◽  
Abdulaziz Mahmoud Ajlouni ◽  
Qasem Mohammad Abu Shaqra ◽  
Muaz Al Zouby

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
F. K. Ommenya ◽  
E. A. Nyawade ◽  
D. M. Andala ◽  
J. Kinyua

A new series of Mn (II), Co (II), Ni (II), Cu (II), and Zn (II) complexes of the Schiff base ligand, 4-chloro-2-{(E)-[(4-fluorophenyl)imino]methyl}phenol (C13H9ClFNO), was synthesized in a methanolic medium. The Schiff base was derived from the condensation reaction of 5-chlorosalicylaldehyde and 4-fluoroaniline at room temperature. Elemental analysis, FT-IR, UV-Vis, and NMR spectral data, molar conductance measurements, and melting points were used to characterize the Schiff base and the metal complexes. From the elemental analysis data, the metal complexes formed had the general formulae [M(L)2(H2O)2], where L = Schiff base ligand (C13H9ClFNO) and M = Mn, Co, Ni, Cu, and Zn. On the basis of FT-IR, electronic spectra, and NMR data, “O” and “N” donor atoms of the Schiff base ligand participated in coordination with the metal (II) ions, and thus, a six coordinated octahedral geometry for all these complexes was proposed. Molar conductance studies on the complexes indicated they were nonelectrolytic in nature. The Schiff base ligand and its metal (II) complexes were tested in vitro to evaluate their bactericidal activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus typhi) using the disc diffusion method. The antibacterial evaluation results revealed that the metal (II) complexes exhibited higher antibacterial activity than the free Schiff base ligand.


Sign in / Sign up

Export Citation Format

Share Document