Novel thiazolium ionic liquids-tagged bicyclo-palladium(II) Schiff base complexes; Synthesis, characterization and in vitro cytotoxicity toward ovarian cancer

2022 ◽  
Vol 1249 ◽  
pp. 131594
Author(s):  
Mohammad Y. Alfaifi ◽  
Serag Eldin I. Elbehairi ◽  
Reda F.M. Elshaarawy ◽  
Mohamed A.-E. Zein
Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 969
Author(s):  
John S. Lazo ◽  
Elizabeth R. Sharlow ◽  
Robert Cornelison ◽  
Duncan J. Hart ◽  
Danielle C. Llaneza ◽  
...  

High grade serous ovarian cancer (OvCa) frequently becomes drug resistant and often recurs. Consequently, new drug targets and therapies are needed. Bioinformatics-based studies uncovered a relationship between high Protein Tyrosine Phosphatase of Regenerating Liver-3 (PRL3 also known as PTP4A3) expression and poor patient survival in both early and late stage OvCa. PTP4A3 mRNA levels were 5–20 fold higher in drug resistant or high grade serous OvCa cell lines compared to nonmalignant cells. JMS-053 is a potent allosteric small molecule PTP4A3 inhibitor and to explore further the role of PTP4A3 in OvCa, we synthesized and interrogated a series of JMS-053-based analogs in OvCa cell line-based phenotypic assays. While the JMS-053 analogs inhibit in vitro PTP4A3 enzyme activity, none were superior to JMS-053 in reducing high grade serous OvCa cell survival. Because PTP4A3 controls cell migration, we interrogated the effect of JMS-053 on this cancer-relevant process. Both JMS-053 and CRISPR/Cas9 PTP4A3 depletion blocked cell migration. The inhibition caused by JMS-053 required the presence of PTP4A3. JMS-053 caused additive or synergistic in vitro cytotoxicity when combined with paclitaxel and reduced in vivo OvCa dissemination. These results indicate the importance of PTP4A3 in OvCa and support further investigations of the lead inhibitor, JMS-053.


2021 ◽  
Vol 322 ◽  
pp. 114977
Author(s):  
Ahmed M. Abu-Dief ◽  
Nashwa M. El-Metwaly ◽  
Seraj Omar Alzahrani ◽  
Afrah M. Bawazeer ◽  
Saad Shaaban ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4471
Author(s):  
Lara G. Freidus ◽  
Pradeep Kumar ◽  
Thashree Marimuthu ◽  
Priyamvada Pradeep ◽  
Viness Pillay ◽  
...  

Synthesis of a novel theranostic molecule for targeted cancer intervention. A reaction between curcumin and lawsone was carried out to yield the novel curcumin naphthoquinone (CurNQ) molecule (2,2′-((((1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl) bis(2-methoxy-4,1-phenylene))bis(oxy))bis(naphthalene-1,4-dione). CurNQ’s structure was elucidated and was fully characterized. CurNQ was demonstrated to have pH specific solubility, its saturation solubility increased from 11.15 µM at pH 7.4 to 20.7 µM at pH 6.8. This pH responsivity allows for cancer targeting (Warburg effect). Moreover, CurNQ displayed intrinsic fluorescence, thus enabling imaging and detection applications. In vitro cytotoxicity assays demonstrated the chemotherapeutic properties of CurNQ as CurNQ reduced cell viability to below 50% in OVCAR-5 and SKOV3 ovarian cancer cell lines. CurNQ is a novel theranostic molecule for potential targeted cancer detection and treatment.


Sign in / Sign up

Export Citation Format

Share Document