The central vein sign is present in most infratentorial multiple sclerosis plaques

Author(s):  
Gaitán MI ◽  
Paday Formenti ME ◽  
Calandri I ◽  
Ysrraelit MC ◽  
Yañez P ◽  
...  
Author(s):  
Maciej Juryńczyk ◽  
Elżbieta Klimiec-Moskal ◽  
Yazhuo Kong ◽  
Samuel Hurley ◽  
Silvia Messina ◽  
...  

Abstract Background Separating antibody-negative neuromyelitis optica spectrum disorders (NMOSD) from multiple sclerosis (MS) in borderline cases is extremely challenging due to lack of biomarkers. Elucidating different pathologies within the likely heterogenous antibody-negative NMOSD/MS overlap syndrome is, therefore, a major unmet need which would help avoid disability from inappropriate treatment. Objective In this study we aimed to identify distinct subgroups within the antibody-negative NMOSD/MS overlap syndrome. Methods Twenty-five relapsing antibody-negative patients with NMOSD features underwent a prospective brain and spinal cord MRI. Subgroups were identified by an unsupervised algorithm based on pre-selected NMOSD/MS discriminators. Results Four subgroups were identified. Patients from Group 1 termed “MS-like” (n = 6) often had central vein sign and cortical lesions (83% and 67%, respectively). All patients from Group 2 (“spinal MS-like”, 8) had short-segment myelitis and no MS-like brain lesions. Group 3 (“classic NMO-like”, 6) had high percentage of bilateral optic neuritis and longitudinally extensive transverse myelitis (LETM, 80% and 60%, respectively) and normal brain appearance (100%). Group 4 (“NMO-like with brain involvement”, 5) typically had a history of NMOSD-like brain lesions and LETM. When compared with other groups, Group 4 had significantly decreased fractional anisotropy in non-lesioned tracts (0.46 vs. 0.49, p = 0.003) and decreased thalamus volume (0.84 vs. 0.98, p = 0.04). Conclusions NMOSD/MS cohort contains distinct subgroups likely corresponding to different pathologies and requiring tailored treatment. We propose that non-conventional MRI might help optimise diagnosis in these challenging patients.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicolo’ Bruschi ◽  
Giacomo Boffa ◽  
Matilde Inglese

Abstract Magnetic resonance imaging (MRI) is essential for the early diagnosis of multiple sclerosis (MS), for investigating the disease pathophysiology, and for discriminating MS from other neurological diseases. Ultra-high-field strength (7-T) MRI provides a new tool for studying MS and other demyelinating diseases both in research and in clinical settings. We present an overview of 7-T MRI application in MS focusing on increased sensitivity and specificity for lesion detection and characterisation in the brain and spinal cord, central vein sign identification, and leptomeningeal enhancement detection. We also discuss the role of 7-T MRI in improving our understanding of MS pathophysiology with the aid of metabolic imaging. In addition, we present 7-T MRI applications in other demyelinating diseases. 7-T MRI allows better detection of the anatomical, pathological, and functional features of MS, thus improving our understanding of MS pathology in vivo. 7-T MRI also represents a potential tool for earlier and more accurate diagnosis.


Author(s):  
Marwa Kaisey ◽  
Andrew J. Solomon ◽  
Brooke L. Guerrero ◽  
Brian Renner ◽  
Zhaoyang Fan ◽  
...  

2017 ◽  
Vol 01 (04) ◽  
pp. E294-E306 ◽  
Author(s):  
Mike Wattjes ◽  
Peter Raab

AbstractMagnetic resonance imaging (MRI) plays an important role in the diagnosis of multiple sclerosis and has been incorporated into the McDonald diagnostic criteria for MS. In particular, for the exclusion of important differential diagnosis and comorbidities, new MRI markers have been established such as the “central vein sign”. In addition to diagnostic purposes, the role of MRI in MS monitoring is becoming increasingly important, particularly for pharmacovigilance. This includes treatment efficacy monitoring, prediction of treatment response and safety monitoring. Quantitative MRI methods and ultra-high-field MRI offer the opportunity for the quantitative assessment of damage in normal-appearing brain tissue. However, the standardization of these techniques with the goal of implementation in clinical routine will be one of the major challenges in the near future.


2020 ◽  
Vol 45 ◽  
pp. 102409 ◽  
Author(s):  
Claudia E. Weber ◽  
Vesile Sandikci ◽  
Anne Ebert ◽  
Kristina Szabo ◽  
Michael Platten ◽  
...  

2020 ◽  
Vol 75 (6) ◽  
pp. 479.e9-479.e15 ◽  
Author(s):  
A. Bhandari ◽  
H. Xiang ◽  
J. Lechner-Scott ◽  
M. Agzarian

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chong Hyun Suh ◽  
Sang Joon Kim ◽  
Seung Chai Jung ◽  
Choong Gon Choi ◽  
Ho Sung Kim

AbstractWe aimed to evaluate the pooled incidence of central vein sign on T2*-weighted images from patients with multiple sclerosis (MS), and to determine the diagnostic performance of this central vein sign for differentiating MS from other white matter lesions and provide an optimal cut-off value. A computerized systematic search of the literature in PUBMED and EMBASE was conducted up to December 14, 2018. Original articles investigating central vein sign on T2*-weighted images of patients with MS were selected. The pooled incidence was obtained using random-effects model. The pooled sensitivity and specificity were obtained using a bivariate random-effects model. An optimal cut-off value for the proportion of lesions with a central vein sign was calculated from those studies providing individual patient data. Twenty-one eligible articles covering 501 patients with MS were included. The pooled incidence of central vein sign at the level of individual lesion in patients with MS was 74% (95% CI, 65–82%). The pooled sensitivity and pooled specificity for the diagnostic performance of the central vein sign were 98% (95% CI, 92–100%) and 97% (95% CI, 91–99%), respectively. The area under the HSROC curve was 1.00 (95% CI, 0.99–1.00). The optimal cut-off value for the proportion of lesions with a central vein sign was found to be 45%. Although various T2*-weighted images have been used across studies, the current evidence supports the use of the central vein sign on T2*-weighted images to differentiate MS from other white matter lesions.


2020 ◽  
Vol 33 (5) ◽  
Author(s):  
Pietro Maggi ◽  
Mário João Fartaria ◽  
João Jorge ◽  
Francesco La Rosa ◽  
Martina Absinta ◽  
...  

2020 ◽  
pp. 135245852094378 ◽  
Author(s):  
François Guisset ◽  
Valentina Lolli ◽  
Céline Bugli ◽  
Gaetano Perrotta ◽  
Julie Absil ◽  
...  

Background: The central vein sign (CVS) is an imaging biomarker able to differentiate multiple sclerosis (MS) from other conditions causing similar appearance lesions on magnetic resonance imaging (MRI), including cerebral small vessel disease (CSVD). However, the impact of vascular risk factors (VRFs) for CSVD on the percentage of CVS positive (CVS+) lesions in MS has never been evaluated. Objective: To investigate the association between different VRFs and the percentage of CVS+ lesions in MS. Methods: In 50 MS patients, 3T brain MRIs (including high-resolution 3-dimensional T2*-weighted images) were analyzed for the presence of the CVS and MRI markers of CSVD. A backward stepwise regression model was used to predict the combined predictive effect of VRF (i.e. age, hypertension, diabetes, obesity, ever-smoking, and hypercholesterolemia) and MRI markers of CSVD on the CVS. Results: The median frequency of CVS+ lesions was 71% (range: 35%–100%). In univariate analysis, age ( p < 0.0001), hypertension ( p < 0.001), diabetes ( p < 0.01), obesity ( p < 0.01), smoking ( p < 0.05), and the presence of enlarged-perivascular-spaces on MRI ( p < 0.005) were all associated with a lower percentage of CVS+ lesions. The stepwise regression model showed that age and arterial hypertension were both associated with the percentage of CVS+ lesions in MS (adjusted R2 = 0.46; p < 0.0001 and p = 0.01, respectively). Conclusion: The proportion of CVS+ lesions significantly decreases in older and hypertensive MS patients. Although this study was conducted in patients with an already established MS diagnosis, the diagnostic yield of the previously proposed 35% CVS proportion-based diagnostic threshold appears to be not affected. Overall these results suggest that the presence of VRF for CSVD should be taken into account during the CVS assessment.


Sign in / Sign up

Export Citation Format

Share Document