Mechanical properties of Nd2O3/Y2O3-coated zirconia ceramics

2004 ◽  
Vol 374 (1-2) ◽  
pp. 239-243 ◽  
Author(s):  
Tao Xu ◽  
Jef Vleugels ◽  
Omer Van der Biest ◽  
Peiling Wang
1992 ◽  
Vol 27 (16) ◽  
pp. 4429-4438 ◽  
Author(s):  
G. S. A. M. Theunissen ◽  
J. S. Bouma ◽  
A. J. A. Winnubst ◽  
A. J. Burggraaf

2017 ◽  
Vol 13 ◽  
pp. 9-14
Author(s):  
Alexander I. Tyurin ◽  
Andrey O. Zhigachev ◽  
Alexey V. Umrikhin ◽  
Vyacheslav V. Rodaev ◽  
Tatyana S. Pirozhkova

For the first time nanostructured engineering ceramics were prepared from natural zirconia mineral (baddeleyite) with CaO as a tetragonal phase stabilizer. The effect of synthesis conditions on microstructure and mechanical properties of the baddeleyite-based ceramics is reported, furthermore, the effect of calcia content on hardness and fracture toughness is studied. Optimal calcia concentration and synthesis conditions are found, corresponding hardness and fracture toughness values are 10,8 GPa and 13,3 MPa×m1/2. The reported mechanical properties are comparable to those typically reported for yttria-stabilized engineering zirconia ceramics, prepared from chemically synthesized zirconia.


1990 ◽  
Vol 98 (1142) ◽  
pp. 1132-1138 ◽  
Author(s):  
Kazunori JIKIHARA ◽  
Mamoru ISHIHARA

2008 ◽  
Vol 27 (3) ◽  
pp. 408-414 ◽  
Author(s):  
Hideo SATO ◽  
Kiyotaka YAMADA ◽  
Giuseppe PEZZOTTI ◽  
Masahiro NAWA ◽  
Seiji BAN

2001 ◽  
Vol 206-213 ◽  
pp. 1633-1636
Author(s):  
Laurent Gremillard ◽  
Anne Claire Bruneau ◽  
Jérôme Chevalier ◽  
Thierry Epicier ◽  
Gilbert Fantozzi

2014 ◽  
Vol 11 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Igor Danilenko ◽  
Serhii Prokhorenko ◽  
Tetyana Konstantinova ◽  
Leonid Ahkozov ◽  
Valerii Burkhovetski ◽  
...  

The use of ceramic instead of metallic parts in devices that operate in aggressive conditions increases the service life of machines and equipment for chemical, metallurgical and other industries. The wear resistant zirconia/alumina composites were sintered from nanopowders obtained by co-precipitation technique. In the case of addition of 1wt% of alumina in zirconia ceramics the wear resistance increased by approximately 30%.The formation of complex multilevel composite structures, such as Al3+ ion segregation on zirconia grain boundaries and intracrystalline alumina inclusions in zirconia grains, increased the fracture toughness values of composites obtained from co-precipitated nanopowders and consequently decreased the volume loss of ceramic material.In this study, we investigated the effect of nanopowders synthesis methods and alumina concentration on composite structure, fracture toughness and tribological behavior of 3Y-TZP/alumina ceramic composites and searched correlation between structures and mechanical properties.


2020 ◽  
Vol 10 ◽  
pp. 5-18
Author(s):  
S. А. Ghyngаzоv ◽  
◽  
V. А. Коstеnко ◽  
A. K. Khassenov ◽  
◽  
...  

The article considers the influence of the treatment modes by N2+ and Ar+ ions beams on the physical and mechanical properties of zirconia ceramics. Surface modification of zirconia ceramics was performed using two modes of ion treatment — pulsed and continuous. The pulse mode of treatment by N2+ ions was realized at an accelerating voltage of 250 – 300 kV, current density j = 150 – 200 A/cm2, and energy density W = (3.5 and 5) ± 5 % J/cm2. The continuous mode of treatment by Ar+ ions was realized at an accelerating voltage of 30 kV and an ion current density of 300 and 500 μA/cm2. The fluence of the Ar+ ion beam varied from 1016 to 1018 cm–2. It is established that the pulsed mode of ion treatment leads to the melting and recrystallization of the surface of ceramics. It is shown that this treatment leads to a violation of the oxygen stoichiometry in ceramics and, as a result, there is an appearance of electrical conductivity in the near-surface layers, the layers of zirconia ceramics become conductive. It was established that the continuous mode of ion treatment does not lead to the melting and recrystallization of the ceramics surface, but is accompanied by its slight etching. It is shown that under the action of continuous ion treatment, microhardness increases (by 14 %). Hardening of the surface layers of ceramics is observed at a depth that exceeds the average projected range of Ar+ ion by 103 times.


Sign in / Sign up

Export Citation Format

Share Document