scholarly journals Mechanical properties of ultra-fine grained zirconia ceramics

1992 ◽  
Vol 27 (16) ◽  
pp. 4429-4438 ◽  
Author(s):  
G. S. A. M. Theunissen ◽  
J. S. Bouma ◽  
A. J. A. Winnubst ◽  
A. J. Burggraaf
2014 ◽  
Vol 1040 ◽  
pp. 845-849 ◽  
Author(s):  
Aleksander S. Ivashutenko ◽  
Nikita Martyushev ◽  
Igor G. Vidayev ◽  
Kirill S. Kostikov

The article is devoted to the investigation of alumina-zirconia ceramics properties depending on its production technology. Analysis of the technological factors that allow acquiring fine-grained structure as well as high physical and mechanical properties of alumina-zirconia ceramics is presented in the paper. It is shown that when using magnetic pulse compaction due to the pulse impact and adiabaticity of the process the most compact structure is formed. It is possible to obtain pressings with the density of up to 68% of the theoretical value. The obtained compact structure secures high physical, mechanical, and operating characteristics of the finished product.


2019 ◽  
Vol 36 ◽  
pp. 112-120 ◽  
Author(s):  
Ömer Üstündağ ◽  
Sergej Gook ◽  
Andrey Gumenyuk ◽  
Michael Rethmeier

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 461
Author(s):  
Konrad Kosiba ◽  
Konda Gokuldoss Prashanth ◽  
Sergio Scudino

The phase and microstructure formation as well as mechanical properties of the rapidly solidified Mg67Ag33 (at. %) alloy were investigated. Owing to kinetic constraints effective during rapid cooling, the formation of equilibrium phases is suppressed. Instead, the microstructure is mainly composed of oversaturated hexagonal closest packed Mg-based dendrites surrounded by a mixture of phases, as probed by X-ray diffraction, electron microscopy and energy dispersive X-ray spectroscopy. A possible non-equilibrium phase diagram is suggested. Mainly because of the fine-grained dendritic and interdendritic microstructure, the material shows appreciable mechanical properties, such as a compressive yield strength and Young’s modulus of 245 ± 5 MPa and 63 ± 2 GPa, respectively. Due to this low Young’s modulus, the Mg67Ag33 alloy has potential for usage as biomaterial and challenges ahead, such as biomechanical compatibility, biodegradability and antibacterial properties are outlined.


Hydrocarbon gels contain a number of materials, such as rubber, greases, saponified mineral oils, etc., of great interest for various engineering purposes. Specific requirements in mechanical properties have been met by producing gels in appropriately chosen patterns of constituent components of visible, colloidal, molecular and atomic sizes, ranging from coarse-grained aggregates, represented by sponges, foams, emulsions, etc.; to fine-grained and apparently homogeneous ones, represented by optically clear compounds. The engineer who has to deal with the whole range of such materials will adopt a macroscopic point of view, based on an apparent continuity of all the material structures and of the distributions in space and time of the displacements and forces occurring under mechanical actions. It has been possible to determine these distributions in the framework of a comprehensive scheme in which the fundamental principles of the mechanics of continuous media provide the theoretical basis, and a testing instrument of new design, termed Rheogoniometer, the means of experimental measurement (Weissenberg 1931, 1934, 1946, 1947, 1948).


2011 ◽  
Vol 29 (4) ◽  
pp. 333-345 ◽  
Author(s):  
Yuan-Qin Xu ◽  
Pei-Ying Li ◽  
Ping Li ◽  
Le-Jun Liu ◽  
Cheng-Xiao Cao ◽  
...  

2015 ◽  
Vol 625 ◽  
pp. 296-302 ◽  
Author(s):  
Mladen-Mateo Primorac ◽  
Manuel David Abad ◽  
Peter Hosemann ◽  
Marius Kreuzeder ◽  
Verena Maier ◽  
...  

2004 ◽  
Vol 374 (1-2) ◽  
pp. 239-243 ◽  
Author(s):  
Tao Xu ◽  
Jef Vleugels ◽  
Omer Van der Biest ◽  
Peiling Wang

Sign in / Sign up

Export Citation Format

Share Document