Texture development of Ca3Co4O9 thermoelectric oxide by high temperature plastic deformation and its contribution to the improvement in electric conductivity

2009 ◽  
Vol 527 (1-2) ◽  
pp. 61-64 ◽  
Author(s):  
H. Fukutomi ◽  
Y. Konno ◽  
K. Okayasu ◽  
M. Hasegawa ◽  
H. Nakatsugawa
2007 ◽  
Vol 539-543 ◽  
pp. 3420-3423
Author(s):  
Hiroshi Fukutomi ◽  
Eisuke Iguchi ◽  
Kyohei Shibuya

Thermoelectric oxide Bi1.5Pb0.5Sr1.7Y0.5Co2O9- δ is produced by sintering method. Uniaxial compression deformation is performed on the oxide under various strain rates at 1113K, close to the melting temperature. After deformation, density, microstructure, texture and thermoelectric characteristics such as specific electric resistance and Seebeck coefficient, are experimentally studied. Deformation mechanism is examined by stress change test. It is found that the oxide plastically deforms mainly by the motion of dislocations at the present temperature, resulting in an increase in density as well as the development of texture. It is concluded that the specific electric resistance extensively decreases by the high temperature compression deformation through densification and texture development.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 645
Author(s):  
Igor Litovchenko ◽  
Sergey Akkuzin ◽  
Nadezhda Polekhina ◽  
Kseniya Almaeva ◽  
Evgeny Moskvichev

The effect of high-temperature thermomechanical treatment on the structural transformations and mechanical properties of metastable austenitic steel of the AISI 321 type is investigated. The features of the grain and defect microstructure of steel were studied by scanning electron microscopy with electron back-scatter diffraction (SEM EBSD) and transmission electron microscopy (TEM). It is shown that in the initial state after solution treatment the average grain size is 18 μm. A high (≈50%) fraction of twin boundaries (annealing twins) was found. In the course of hot (with heating up to 1100 °C) plastic deformation by rolling to moderate strain (e = 1.6, where e is true strain) the grain structure undergoes fragmentation, which gives rise to grain refining (the average grain size is 8 μm). Partial recovery and recrystallization also occur. The fraction of low-angle misorientation boundaries increases up to ≈46%, and that of twin boundaries decreases to ≈25%, compared to the initial state. The yield strength after this treatment reaches up to 477 MPa with elongation-to-failure of 26%. The combination of plastic deformation with heating up to 1100 °C (e = 0.8) and subsequent deformation with heating up to 600 °C (e = 0.7) reduces the average grain size to 1.4 μm and forms submicrocrystalline fragments. The fraction of low-angle misorientation boundaries is ≈60%, and that of twin boundaries is ≈3%. The structural states formed after this treatment provide an increase in the strength properties of steel (yield strength reaches up to 677 MPa) with ductility values of 12%. The mechanisms of plastic deformation and strengthening of metastable austenitic steel under the above high-temperature thermomechanical treatments are discussed.


1998 ◽  
Vol 46 (11) ◽  
pp. 3995-4004 ◽  
Author(s):  
M. Jiménez-Melendo ◽  
C. Clauss ◽  
A. Domi ́nguez-Rodri ́guez ◽  
G. de Portu ◽  
E. Roncari ◽  
...  

1986 ◽  
Vol 17 (3) ◽  
pp. 519-525 ◽  
Author(s):  
Gregory B. Soscia ◽  
Roger N. Wright

2013 ◽  
Vol 675 ◽  
pp. 231-234
Author(s):  
Tie Ming Guo ◽  
Chang Song Han ◽  
Jian Gang Jia ◽  
Ying Fu ◽  
Zhi Hui ◽  
...  

Thermodynamic calculations indicate that molybdenum particles reinforced copper-matrix composite can be fabricated in CuO-Al-MoO3 powder system. Thermit reaction and self-propagation high-temperature synthesis (SHS) were applied to prepare samples. Then the phases, structure morphologies and properties were studied through the instruments of XRD, SEM and microhardness tester. The results show that nanocrystals are formed in Cu matrix and molybdenum particles are dispersive distributed in Cu matrix. The microhardness of 5﹪Mo-Cu nanocomposite is 110HV,and the relative electric conductivity is 58.6﹪IACS.


Author(s):  
Georg Frommeyer ◽  
Sven Knippscheer

Aluminum-rich intermetallic compounds of the Al3X-type with transmission metals (X = Ti. Zr, Nb, V) of Groups IVb and Vb are of interest in the development of novel high-temperature and lightweight structural materials. This article describes the important physical and mechanical properties of trialuminides with DO22 structure and their L12 variations. Topical coverage includes: crystal structure and selected physical properties, plastic deformation, oxidation behavior, and applications.


2021 ◽  
Author(s):  
Changning Li ◽  
Saurabh Khuje ◽  
Donald Petit ◽  
Yulong Huang ◽  
Aaron Sheng ◽  
...  

Abstract As one of the conductive ink materials with high electric conductivity, elemental copper (Cu) based nanocrystals promise for printable electronics. Here, single crystalline Cu nanoplates were synthesized using a facile hydrothermal method. Size engineering of Cu nanoplates can be rationalized by using the LaMer model and the versatile Cu conductive ink materials are suitable for different printing technologies. The printed Cu traces show high electric conductivity of 6 MS/m, exhibiting electro-magnetic interference shielding efficiency value of 75 dB at an average thicknesses of 11 μm. Together with flexible alumina ceramic aerogel substrates, it kept 87% conductivity at the environmental temperature of 400 ℃, demonstrating the potential of Cu conductive ink for high-temperature printable electronics applications.


Sign in / Sign up

Export Citation Format

Share Document