Printed copper-nanoplate conductor for electro-magnetic interference

2021 ◽  
Author(s):  
Changning Li ◽  
Saurabh Khuje ◽  
Donald Petit ◽  
Yulong Huang ◽  
Aaron Sheng ◽  
...  

Abstract As one of the conductive ink materials with high electric conductivity, elemental copper (Cu) based nanocrystals promise for printable electronics. Here, single crystalline Cu nanoplates were synthesized using a facile hydrothermal method. Size engineering of Cu nanoplates can be rationalized by using the LaMer model and the versatile Cu conductive ink materials are suitable for different printing technologies. The printed Cu traces show high electric conductivity of 6 MS/m, exhibiting electro-magnetic interference shielding efficiency value of 75 dB at an average thicknesses of 11 μm. Together with flexible alumina ceramic aerogel substrates, it kept 87% conductivity at the environmental temperature of 400 ℃, demonstrating the potential of Cu conductive ink for high-temperature printable electronics applications.

2021 ◽  
Vol 11 (8) ◽  
pp. 3466
Author(s):  
Lulu Liu ◽  
Shikai Yin ◽  
Gang Luo ◽  
Zhenhua Zhao ◽  
Wei Chen

Two-dimensional (2D) triaxial braided composites with braiding angle (± 60°/0°) have been used as aero-engine containing casing material. In the current paper, three types of projectile with the same mass and equivalent diameter, including cylinder gelatin projectile, carbon fiber-reinforced plastics (CFRP), and titanium alloy blade-like projectile, were employed to impact on triaxial braided composites panels with thickness of 4.3 mm at room temperature (20 °C) to figure out the influences of projectile materials on the damage pattern and energy absorption behavior. Furthermore, the influences of environmental temperature were also discussed considering the aviation service condition by conducting ballistic impact tests using CFRP projectile at cryogenic temperature (−50 °C) and high temperature (150 °C). The triaxial braided target panel were pre-heated or cooled in a low-temperature chamber before mounted. It is found that soft gelatin project mainly causes global deformation of the target and therefore absorb much more energy. The triaxial braided composite absorb 77.59% more energy when impacted with CFRP projectile than that with titanium alloy projectile, which mainly results in shear fracture. The environmental temperature has influences on the damage pattern and energy absorption of triaxial braided composites. The cryogenic temperature deteriorates the impact resistance of the triaxial braided composite material with matrix cracking damage pattern, while high temperature condition improves its impact resistance with shearing fracture damage pattern.


It is now generally recognised that future definitions of the units of length will probably be based on the length of a wave of visible light. At present the wave-length of the red radiation of cadmium serves as the basis of all measurements of the lengths of electro-magnetic waves which are perceptible by optical means, and provisional sanction has been given to measurements of length on the same basis, as an alternative to direct reference to the metre. Whether the cadmium red radiation provides the best reference standard for all measurements of length has not yet been definitely established. Two international committees, one representing spectroscopists and the other metrologists, have sanctioned standard specifications for cadmium lamps of the Michelson type from which the red radiation may be produced. The two specifications differ from one another in certain details, but both are subject to the same objections. These objections are directed partly against the high temperature at which it is necessary to run the lamp and partly against the high voltage required to excite the radiation. Therefore, such hyperfine structure and asymmetry as may be present in the red line of cadmium is likely to be masked in the Michelson lamp by a combination of two phenomena —the enhanced Doppler effect due to the high temperature of the radiating cadmium atoms, and the effect of the moderately high intensity of the electric field. Were this not so, it might be somewhat surprising that no definite evidence of fine structure or asymmetry had so far been observed in the red line from the Michelson lamp, notwithstanding the many careful examinations, with the aid of the most sensitive interferometers, to which this line has been subjected, in view of its importance as the reference standard for all other wave-lengths. Recently Nagaoka and Sugiura have recorded that they have observed slight evidences of structure in the red radiation when excited under special conditions in which great precautions were taken to ensure extreme sharpness of the line. It is believed, however, that no subsequent confirmation of this effect has yet been published.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2676
Author(s):  
Chen Li ◽  
Boshan Sun ◽  
Yanan Xue ◽  
Jijun Xiong

Alumina ceramic is a highly promising material for fabricating high-temperature pressure sensors. In this paper, a direct bonding method for fabricating a sensitive cavity with alumina ceramic is presented. Alumina ceramic substrates were bonded together to form a sensitive cavity for high-temperature pressure environments. The device can sense pressure parameters at high temperatures. To verify the sensitivity performance of the fabrication method in high-temperature environments, an inductor and capacitor were integrated on the ceramic substrate with the fabricated sensitive cavity to form a wireless passive LC pressure sensor with thick-film integrated technology. Finally, the fabricated sensor was tested using a system test platform. The experimental results show that the sensor can realize pressure measurements above 900 °C, confirming that the fabricated sensitive cavity has excellent sealing properties. Therefore, the direct bonding method can potentially be used for developing all-ceramic high-temperature pressure sensors for application in harsh environments.


2013 ◽  
Vol 675 ◽  
pp. 231-234
Author(s):  
Tie Ming Guo ◽  
Chang Song Han ◽  
Jian Gang Jia ◽  
Ying Fu ◽  
Zhi Hui ◽  
...  

Thermodynamic calculations indicate that molybdenum particles reinforced copper-matrix composite can be fabricated in CuO-Al-MoO3 powder system. Thermit reaction and self-propagation high-temperature synthesis (SHS) were applied to prepare samples. Then the phases, structure morphologies and properties were studied through the instruments of XRD, SEM and microhardness tester. The results show that nanocrystals are formed in Cu matrix and molybdenum particles are dispersive distributed in Cu matrix. The microhardness of 5﹪Mo-Cu nanocomposite is 110HV,and the relative electric conductivity is 58.6﹪IACS.


2015 ◽  
Vol 1120-1121 ◽  
pp. 220-224
Author(s):  
Ying Wang ◽  
Dong Hao Sun ◽  
Yan Feng Guo

Functional Polyaniline (PANI) nanotubes are easily synthesized in high yield by an in situ polymerization using a fibrillar complex of acid orange II (AO II) and FeCl3as a template. During the process, the complex templates help direct the growth of fibrillar PANI on their surfaces, resulting in the formation of composite micro/nanofibers of PANI. After polymerization, by the post-treatment of removing templates in 1.0 M hydrochloric acid solution, PANI nanotubes with azo function and high electric conductivity of PANI are readily fabricated. The PANI nanotubes have about 150nm-300nm in diameter and several microns in length. At room temperature, the electric conductivity of PANI nanotubes is up to 10-1S/cm order of magnitude. The characterizations, including FTIR, UV-visible, XRD and TG, are presented.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 777 ◽  
Author(s):  
Lei Geng ◽  
Fengfeng Yan ◽  
Chenhao Dong ◽  
Cuihua An

Bimetallic oxides have been considered as potential candidates for supercapacitors due to their relatively high electric conductivity, abundant redox reactions and cheapness. However, nanoparticle aggregation and huge volume variation during charging-discharging procedures make it hard for them to be applied widely. In this work, one-dimensional (1D) MnFe2O4@C nanowires were in-situ synthesized via a simply modified micro-emulsion technique, followed by thermal treatment. The novel 1D and core-shell architecture, and in-situ carbon coating promote its electric conductivity and porous feature. Due to these advantages, the MnFe2O4@C electrode exhibits a high specific capacitance of 824 F·g−1 at 0.1 A·g−1 and remains 476 F·g−1 at 5 A·g−1. After 10,000 cycles, the capacitance retention of the MnFe2O4@C electrode is up to 93.9%, suggesting its excellent long-term cycling stability. After assembling with activated carbon (AC) to form a MnFe2O4@C//AC device, the energy density of this MnFe2O4@C//AC device is 27 W·h·kg−1 at a power density of 290 W·kg−1, and remains at a 10 W·h·kg−1 energy density at a high power density of 9300 W·kg−1.


Sign in / Sign up

Export Citation Format

Share Document