Study on hot deformation behavior of carbon structural steel with flow stress

2012 ◽  
Vol 539 ◽  
pp. 294-300 ◽  
Author(s):  
Jian Wang ◽  
Hong Xiao ◽  
Hongbiao Xie ◽  
Xiumei Xu ◽  
Yanan Gao
Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Weiqi Kang ◽  
Yi Yang ◽  
Sheng Cao ◽  
Lei Li ◽  
Shewei Xin ◽  
...  

The hot deformation behavior of a new Al–Mn–Sc alloy was investigated by hot compression conducted at temperatures from 330 to 490 °C and strain rates from 0.01 to 10 s−1. The hot deformation behavior and microstructure of the alloy were significantly affected by the deformation temperatures and strain rates. The peak flow stress decreased with increasing deformation temperatures and decreasing strain rates. According to the hot deformation behavior, the constitutive equation was established to describe the steady flow stress, and a hot processing map at 0.4 strain was obtained based on the dynamic material model and the Prasad instability standard, which can be used to evaluate the hot workability of the alloy. The developed hot processing diagram showed that the instability was more likely to occur in the higher Zener–Hollomon parameter region, and the optimal processing range was determined as 420–475 °C and 0.01–0.022 s−1, in which a stable flow and a higher power dissipation were achieved.


2019 ◽  
Vol 157 ◽  
pp. 109915 ◽  
Author(s):  
Martin Detrois ◽  
Stoichko Antonov ◽  
Sammy Tin ◽  
Paul D. Jablonski ◽  
Jeffrey A. Hawk

2013 ◽  
Vol 709 ◽  
pp. 143-147 ◽  
Author(s):  
Tao Wang ◽  
Zhao Li ◽  
Shu Hong Fu ◽  
Yong Zhang ◽  
Yu Xin Zhao ◽  
...  

The hot deformation behavior of U720Li was investigated by isothermal compression tests at temperature ranging from 1060-1180°C and strain rate from 0.001s-1 to 20s-1. The flow stress-strain curves and microstructures were investigated and a constitutive equation was established. It is found that flow stress is sensitive to stain rate and deformation temperature greatly. The higher stain rate resultes in a larger fluctuation in flow stress. The hot deformation activation energy is determined to be 552.8kJ/mol. Grain size increases with increasing temperature and decreases firstly and then increases with increasing strain rate. U720Li alloy should be deformed below the solve temperature of γ primary phase with lower strain rate in order to obtain the even and fine grain size.


2013 ◽  
Vol 17 (5) ◽  
pp. 1523-1528
Author(s):  
Bao-Hua Jia ◽  
Wei-Dong Song ◽  
Hui-Ping Tang ◽  
Jian-Guo Ning

Isothermal compression tests of TC18 titanium alloy at the deformation temperatures ranging from 25?C to 800?C and strain rate ranging from 10-4 to 10-2 s-1 were conducted by using a WDW-300 electronic universal testing machine. The hot deformation behavior of TC18 was characterized based on an analysis of the true stress-true strain curves of TC18 titanium alloy. The curves show that the flow stress increases with increasing the strain rate and decreases with increasing the temperature, and the strain rate play an important role in the flow stress when increasing the temperatures. By taking the effect of strain into account, an improved constitutive relationship was proposed based on the Arrhenius equation. By comparison with the experimental results, the model prediction agreed well with the experimental data, which demonstrated the established constitutive relationship was reliable and can be used to predict the hot deformation behavior of TC18 titanium alloy.


2016 ◽  
Vol 684 ◽  
pp. 35-41 ◽  
Author(s):  
S.V. Rushchits ◽  
E.V. Aryshensky ◽  
S.M. Sosedkov ◽  
A.M. Akhmed'yanov

The deformation behavior of 1565ch alloy under the plane-strain conditions in the temperature range of 350–490 оС and strain rates range of 0,1–10 s-1 is studied. The expression for steady flow stress as the functions of temperature of deformation and strain rate is obtained. It is established that 1565ch alloy with zirconium addition shows higher strain resistance and less tendency to dynamic and static recrystallization than AMg6.


Author(s):  
Mei-ling Li ◽  
Wen-jin Gao ◽  
Ying-hao Zhou

Abstract The 60NiTi (Ni60wt%–Ti40wt%) intermetallic is a hard-to-process material. Understanding of hot deformation behavior is crucial for the hot working of 60NiTi. This work studied hot deformation behavior and corresponding microstructure of the hot isostatic pressed 60NiTi in the temperature range of 900 °C–1050 °C and at strain rates of 0.1, 0.01, and 0.001 s-1 through a hot compression test. The flow stress and microstructure were susceptible to the hot deformation parameters. The flow stress decreased with the increase in deformation temperature and decrease in strain rate. Work hardening occurred at a small strain, then followed by softening; finally, near-dynamic equilibrium was achieved between work hardening and softening. A constitutive equation was developed to describe the effects of strain rate and temperature on flow stress. Simulation of hot deformation via the finite element method revealed the workpiece’s inhomogeneous deformation. The deformation occurred mainly in the center area of the cylindrical sample, resulting in high stress and strain concentrations in this region and causing the equiaxial grains to be compressed into prolate grains. This work can provide guidance for the hot working, such as forging and hot rolling, of 60NiTi.


2017 ◽  
Vol 36 (5) ◽  
pp. 467-475
Author(s):  
Rui Luo ◽  
Qi Zheng ◽  
Zhending Tang ◽  
Yongquan Yao ◽  
Guifang Xu ◽  
...  

AbstractHigh-temperature single-pass compression experiments were conducted on alloy 800H using a Gleeble 3500 thermal-mechanical simulation testing machine, and hot deformation behaviors at temperatures of 1,000–1,150 °C and strain rates of 0.01–1 s–1 were investigated. The results revealed that dynamic recrystallization (DRX) behavior occurred more easily under deformation conditions with relatively low strain rates and high deformation temperatures. By taking the influence of strain on the hot deformation behavior into consideration, a strain-dependent hyperbolic sine constitutive model was constructed. Based on this revised constitutive model, flow stress during deformation was predicted. The linear relation between the predicted value and the experimental result was as high as 0.99648, and the absolute average relative error was 2.019 %. Thus, it was demonstrated that the strain-dependent analysis provided a constitutive model that was able to precisely predict flow stress under experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document