Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy

2012 ◽  
Vol 551 ◽  
pp. 50-58 ◽  
Author(s):  
D. Pérez Escobar ◽  
K. Verbeken ◽  
L. Duprez ◽  
M. Verhaege
2017 ◽  
Vol 61 (4) ◽  
pp. 637-648 ◽  
Author(s):  
Enrico Steppan ◽  
Philipp Mantzke ◽  
Benjamin R. Steffens ◽  
Michael Rhode ◽  
Thomas Kannengiesser

2014 ◽  
Vol 783-786 ◽  
pp. 264-269 ◽  
Author(s):  
Iya I. Tashlykova-Bushkevich ◽  
Keitaro Horikawa ◽  
Goroh Itoh

Hydrogen desorption kinetics for rapidly solidified high purity Al and Al-Cr alloy foils containing 1.0, 1.5 and 3.0 at % Cr were investigated by means of thermal desorption analysis (TDA) at a heating rate of 3.3°C/min. For the first time, it was found that oxide inclusions of Al2O3 are dominant high-temperature hydrogen traps compared with pores and secondary phase precipitates resulted in rapid solidification of Al and its alloys. The correspondent high-temperature evolution rate peak was identified to be positioned at 600°C for high purity Al and shifted to 630°C for Al-Cr alloys. Amount of hydrogen trapped by dislocations increases in the alloys depending on Cr content. Microstructural hydrogen trapping behaviour in low-and intermediate temperature regions observed here was in coincidence with previous data obtained for RS materials using thermal desorption spectroscopy (TDS). The present results on hydrogen thermal desorption evolution indicate that the effect of oxide surface layers becomes remarkable in TDA measurements and show advantages in combinations of both desorption analysis methods to investigate hydrogen desorption kinetics in materials.


2018 ◽  
Vol 36 (5) ◽  
pp. 413-434 ◽  
Author(s):  
Darya Rudomilova ◽  
Tomáš Prošek ◽  
Gerald Luckeneder

AbstractProduction volumes of advanced high strength steels (AHSS) are growing rapidly due to material and energy savings they provide in a number of application areas. In order to use their potential fully, it is necessary to minimize any danger of unexpected failures caused by hydrogen embrittlement. It is possible only if deeper understanding of underlying mechanisms is obtained through further research. Besides description of main grades of AHSS and mechanisms of HE, this paper reviews available tools for determination of hydrogen content and susceptibility to HE focusing on atmospheric conditions. Techniques such as slow strain rate testing, constant load testing, electrochemical permeation technique, scanning Kelvin probe and scanning Kelvin probe force microscopy have already been used to study the effect of hydrogen entered under atmospheric exposure conditions. Nanoindentation, hydrogen microprint technique, thermal desorption spectroscopy, Ag decoration or secondary ion mass spectrometry can be also conducted after atmospheric exposure.


2001 ◽  
Vol 45 (10) ◽  
pp. 1227-1232 ◽  
Author(s):  
Akihide Nagao ◽  
Shigeru Kuramoto ◽  
Koji Ichitani ◽  
Motohiro Kanno

2016 ◽  
Vol 111 ◽  
pp. 770-785 ◽  
Author(s):  
Qinglong Liu ◽  
Jeffrey Venezuela ◽  
Mingxing Zhang ◽  
Qingjun Zhou ◽  
Andrej Atrens

2015 ◽  
Vol 33 (6) ◽  
pp. 515-527 ◽  
Author(s):  
Olga Todoshchenko ◽  
Yuriy Yagodzinskyy ◽  
Valentina Yagodzinska ◽  
Tapio Saukkonen ◽  
Hannu Hänninen

AbstractConstant load tests of high-strength carbon steels with different micro-alloying using strengths in the range of 1000–1400 MPa were performed at ambient temperature under continuous electrochemical hydrogen charging. Hydrogen markedly affects delayed fracture of all the studied steels. Fractography of the studied steels shows that fracture mechanism depends on the chemical composition of the studied steels and hydrogen-induced cracking exhibits intergranular or transgranular character occurring often in the form of hydrogen flakes. The size and chemical composition of non-metallic inclusions are analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Hydrogen-induced cracking initiates at TiN/TiC particles in steels with Ti alloying. Crack paths are studied with electron backscatter diffraction mapping to analyze crack initiation and growth. The thermal desorption spectroscopy method is used to analyze the distribution of hydrogen in the trapping sites. The mechanisms of hydrogen effects on fracture of high-strength steels are discussed.


Sign in / Sign up

Export Citation Format

Share Document