Effect of heterogeneous precipitation caused by segregation of substitutional and interstitial elements on mechanical properties of a β-type Ti alloy

2015 ◽  
Vol 643 ◽  
pp. 109-118 ◽  
Author(s):  
Kengo Narita ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Suyalatu
2015 ◽  
Vol 817 ◽  
pp. 307-311 ◽  
Author(s):  
Peng Chao Zhang ◽  
Jin Chuan Jie ◽  
Yuan Gao ◽  
Tong Min Wang ◽  
Ting Ju Li

The Cu-Cr and Cu-Cr-Ti alloy plates were prepared by vacuum melting and plastic deformation. The effect of slight Ti element on microstructure and mechanical properties of Cu-Cr alloy was discussed. The result shows that Cr particles with spherical shape precipitated from Cu matrix after aging. Plenty Ti atoms dissolved in the vicinity of Cr particles and there were still parts of solid solution Ti atoms in other regions. Improvements in peak hardness and softening resistance were achieved with the addition of Ti element in Cu-Cr alloy. The addition of 0.1 wt.% Ti element makes Cu-Cr alloy possess tensile strength of 565 MPa and hardness of 185.9 HV after aging at 450 °C for 120 min, which can be attributed to multiple strengthening mechanisms, i.e. work hardening, solid solution strengthening and precipitation strengthening.


2018 ◽  
Vol 6 (2) ◽  
pp. 026556 ◽  
Author(s):  
S Ramesh ◽  
H Shivananda Nayaka ◽  
K R Gopi ◽  
Sandeep Sahu

Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 712 ◽  
Author(s):  
Peiyou Li ◽  
Xindi Ma ◽  
Duo Wang ◽  
Hui Zhang

The microstructural and mechanical properties of β-type Ti85-xNb10+xSn5 (x = 0, 3, 6, 10 at.%) alloys with low elastic modulus were investigated. The experimental results show that the Ti85Nb10Sn5 and Ti75Nb20Sn5 alloys are composed of simple α and β phases, respectively; the Ti82Nb13Sn5 and Ti79Nb16Sn5 alloys are composed of β and α″ phases. The content of martensite phase decreases with the increase of Nb content. The Ti82Nb13Sn5 and Ti79Nb16Sn5 alloys show an inverse martensitic phase transition during heating. The Ti85Nb10Sn5 and Ti82Nb13Sn5 alloys with the small residual strain exhibit the good superelastic properties in 10-time cyclic loading. The reduced elastic modulus (Er) of the Ti75Nb20Sn5 alloy (61 GPa) measured by using the nanoindentation technique is 2–6 times of that of human bone (10–30 GPa), and is smaller than that of commercial Ti-6Al-4V biomedical alloy (120 GPa). The Ti75Nb20Sn5 alloy can be considered as a novel biomedical alloy. The wear resistance (H/Er) and anti-wear capability (H3/Er2) values of the four alloys are higher than those of the CP–Ti alloy (0.0238), which indicates that the present alloys have good wear resistance and anti-wear capability.


Author(s):  
Yoshiyuki Kawazoe ◽  
Ursula Carow-Watamura ◽  
Dmitri V. Louzguine

2021 ◽  
Vol 1016 ◽  
pp. 1386-1391
Author(s):  
Anastasia Semenyuk ◽  
Margarita Klimova ◽  
Sergey Zherebtsov ◽  
Nikita Stepanov

High entropy alloys (HEAs) with face-centered cubic (fcc) structure, namely equiatomic CoCrFeMnNi alloy, have attracted considerable attention because of impressive cryogenic mechanical properties – strength, ductility, and fracture toughness. Further increase of the properties can be achieved, for example, by proper alloying. A particularly attractive option is the addition of interstitial elements like carbon or nitrogen. In present work, a series of CoCrFeMnNi-based alloys with different amounts of C and N (0-2 at.%) was prepared by induction melting. The alloys doped with C had lower Cr content to increase the solubility of carbon in the fcc solid solution. It was revealed that the solid solution strengthening effect of both C and N is significantly increased when the testing temperature decreases from 293K to 77K. The effect of thermomechanical processing on the structure and mechanical properties of the alloys is analyzed.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3005 ◽  
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zhenwei Yan ◽  
Zhaojun Tan

In this research, the effects of the compaction velocity on the sinterability of the Al–Fe–Cr–Ti powder metallurgy (PM) alloy by high velocity compaction were investigated. The Al–Fe–Cr–Ti alloy powder was compacted with different velocities by high velocity compaction and then sintered under a flow of high pure (99.999 wt%) nitrogen gas. Results indicated that both the sintered density and mechanical properties increased with increasing compaction velocity. By increasing the compaction velocity, the shrinkage of the sintered samples decreased. A maximum sintered density of 2.85 gcm−3 (relative density is 98%) was obtained when the compaction velocity was 9.4 ms−1. The radial and axial shrinkage were controlled to less than 1% at a compaction velocity of 9.4 ms−1. At a compaction velocity of 9.4 ms−1, sintered compacts with an ultimate tensile strength of 222 MPa and a yield strength of 160 MPa were achieved. The maximum elongation was observed to be 2.6%. The enhanced tensile properties of the Al–Fe–Cr–Ti alloy were mainly due to particle boundary strengthening.


Sign in / Sign up

Export Citation Format

Share Document