Experimental study of high-temperature tensile mechanical properties of 3D needled C/C–SiC composites

2016 ◽  
Vol 654 ◽  
pp. 271-277 ◽  
Author(s):  
Zhen Chen ◽  
Guodong Fang ◽  
Junbo Xie ◽  
Jun Liang
1988 ◽  
Vol 133 ◽  
Author(s):  
Joseph W. Newkirk ◽  
Gerald B. Feldewerth

ABSTRACTThe effect of adding boron to Ti3Al on the microstructure and high temperature tensile properties has been studied. Boron caused a large grain refinement that dominated the tensile properties at all temperatures. Particles of Ti2B were found in all of the boron containing alloys. TiB was found only at concentrations of 0.1% B or more.


2015 ◽  
Vol 816 ◽  
pp. 78-83
Author(s):  
Dong Lin ◽  
Jing Wang ◽  
Chang Rui Zhang ◽  
Ying Bin Cao ◽  
Rong Jun Liu

C/C-SiC composite as low expansion material for space opto-mechanical structures was prepared by gaseous silicon infiltration after high temperature treatment (HTT) on C/C. 2000°C and 2400°C were selected as the treatment temperatures for C/C to study the influences on the properties of C/C-SiC composite. The graphitization level of amorphous C in C/C was improved by HTT. The porosity of C/C increased from 32.88% to 34.25% (2000°C) and 41.06% (2400°C) respectively. In addition, a higher HTT temperature led to a higher density of C/C-SiC composite and a lower SiC content. Furthermore, the mechanical properties and coefficient of thermal expansion (CTE) of the composite decreased as the temperature increased. After 2000°C HTT, the CTE of C/C-SiC composite decreased to-0.055×10-6·K-1 and the mechanical properties (218 MPa) could meet the application demand at the same time.


2005 ◽  
Vol 488-489 ◽  
pp. 753-758
Author(s):  
Wei Wu ◽  
C.M. Hong ◽  
Li Jia Chen ◽  
Yue Wang ◽  
Lin Yang ◽  
...  

High-temperature tensile and fracture behaviors of as-extruded ZK60 alloy were investigated. It was evident from the experiments that with decreasing temperature and increasing strain rate, the 0.2% offset yield strength and ultimate tensile strength of the alloy increased while the elongation to failure decreased. The flowing stress of as-extruded ZK60 alloy during plastic deformation was proportioned to the reciprocal of temperature. At the initial strain rate of 5×10-4s-1, the calculated active energy at 300°C was about 93.4 kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document