Mechanical property evaluations of an amorphous metallic/ceramic multilayer and its role in improving fatigue properties of 316L stainless steel

2016 ◽  
Vol 671 ◽  
pp. 198-202 ◽  
Author(s):  
Cheng-Min Lee ◽  
R.J. Jeng ◽  
Chia-Chi Yu ◽  
Chia-Hao Chang ◽  
Chia-Lin Li ◽  
...  
2011 ◽  
Vol 138-139 ◽  
pp. 832-835
Author(s):  
Yong Jie Liu ◽  
Qing Yuan Wang ◽  
Ren Hui Tian ◽  
Xiao Zhao

In this paper, tensile fatigue properties of 316L stainless steel thin sheets with a thickness of 0.1 mm are studied. The tests are implemented by using micro mechanical fatigue testing sysytem (MMT-250N) at room temperature under tension-tension cyclic loading. The S-N curve of the thin sheets descends continuously at low cycle region. Cyclic σ-N curve and ε-N curve are obtained according to the classical macroscopical fatigue theory. The results agree well with the experimental fatigue data, showing that the traditional fatigue research methods are also suitable for description of MEMS fatigue in a certain extent. The effect factor of frequency was considered in this study and the results show that the fatiuge life and the fatigue strength are increased as loading frequency increasing.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 893 ◽  
Author(s):  
Yongyun Zhang ◽  
Ensheng Feng ◽  
Wei Mo ◽  
Yonghu Lv ◽  
Rui Ma ◽  
...  

316L stainless steel samples are fabricated by metal injection molding using water-atomized and gas-atomized powder with different oxygen contents. The influences of oxygen on the microstructural evolution and fatigue properties of the samples are investigated. The oxygen tends to react with Mn and Si to form oxide particles during sintering. The oxides hamper the densification process and result in decreased sintered density. Moreover, their existence reduces the Mn and Si dissolving into the base metal and compromises the solution strengthening effect. The oxides lead to stress concentration in the tensile and fatigue tests and become the initiation sites of fatigue cracks. After sintering, the samples made from the gas-atomized powder have a much lower oxygen content compared to those made from the water-atomized powder, therefore, exhibiting much better mechanical properties. The tensile strength, yield strength and the elongation of the samples made from the gas-atomized powder are 560 MPa, 205 MPa, and 58%, respectively. Their fatigue lives are about one order of magnitude longer than the samples made from water-atomized powder, and also longer than those fabricated by powder metallurgy and selective laser sintering which were reported in other studies.


2001 ◽  
Vol 148 (2-3) ◽  
pp. 179-190 ◽  
Author(s):  
J.A. Berrı́os ◽  
D.G. Teer ◽  
E.S. Puchi-Cabrera

Sign in / Sign up

Export Citation Format

Share Document