Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy

2018 ◽  
Vol 725 ◽  
pp. 541-548 ◽  
Author(s):  
X.N. Mu ◽  
H.N. Cai ◽  
H.M. Zhang ◽  
Q.B. Fan ◽  
F.C. Wang ◽  
...  
2009 ◽  
Vol 618-619 ◽  
pp. 495-499 ◽  
Author(s):  
Katsuyoshi Kondoh ◽  
Thotsaphon Threrujirapapong ◽  
Junko Umeda ◽  
Hisashi Imai ◽  
Bunshi Fugetsu

Powder metallurgy (P/M) titanium matrix composite (TMC) reinforced with multi-wall carbon nanotube (MWCNT) was prepared by spark plasma sintering (SPS) and hot extrusion process, where the powder surface was coated by un-bundled CNTs via wet process. The microstructure and mechanical properties of P/M pure titanium and reinforced with CNTs were evaluated. The distribution of CNTs and in-situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyser. The mechanical properties of TMC were significantly improved by adding a small amount of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of specimens were analysed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 670 ◽  
Author(s):  
Xiangyang Chen ◽  
Rui Bao ◽  
Jianhong Yi ◽  
Dong Fang ◽  
Jingmei Tao ◽  
...  

Carbon nanotube (CNT)-reinforced metal matrix composites (MMCs) face the problems of dispersion and interfacial wetting with regard to the matrix. A synergetic method of spray pyrolysis (SP) and flake powder metallurgy (FPM) is used in this paper to improve the dispersibility and interfacial bonding of CNTs in a Cu matrix. The results of the interface characterization show interface oxygen atoms (in the form of Cu2O) and a high density of dislocation areas, which is beneficial for interfacial bonding. The tensile results show that the tensile strength of the SP-CNT-Cu composites is much higher than that of the CNT-Cu composites when the mass fraction of the CNTs does not reach the critical value. This can be explained by the nanoparticles which are found on the surface of the CNTs during the SP process. These nanoparticles not only increase the tensile strength of the SP-CNT-Cu composites but also improve the dispersion of the CNTs in the Cu matrix. Thereby, uniform dispersion of CNTs, interfacial bonding between CNTs and the Cu matrix, and the enhancement of tensile strength are achieved simultaneously by the synergetic method.


Sign in / Sign up

Export Citation Format

Share Document