Microstructure evolution, B2 grain growth kinetics and fracture behaviour of a powder metallurgy Ti-22Al-25Nb alloy fabricated by spark plasma sintering

2018 ◽  
Vol 730 ◽  
pp. 106-118 ◽  
Author(s):  
Jianbo Jia ◽  
Wenchao Liu ◽  
Yan Xu ◽  
Chao Lu ◽  
Hailiang Liu ◽  
...  
2019 ◽  
Vol 791 ◽  
pp. 1114-1121 ◽  
Author(s):  
M. Vaidya ◽  
Ameey Anupam ◽  
J. Vijay Bharadwaj ◽  
Chandan Srivastava ◽  
B.S. Murty

2009 ◽  
Vol 423 ◽  
pp. 67-72 ◽  
Author(s):  
A. Lara ◽  
R. Poyato ◽  
A. Muñoz ◽  
A.L. Ortiz ◽  
Arturo Domínguez-Rodríguez

Additive-free -SiC powders were sintered by means of Spark Plasma Sintering System. Experiments were performed in the temperature range from 1650°C to 2200°C, 3 to 10 min holding time and pressure from 50 until 150 MPa. In order to favour sinterization, the starting powder was mechanically activated: defect concentration was increased by centrifugal ball milling. Applied temperature, holding time and/or pressure were varied to analyze their effect on the densification and grain growth kinetics. The full sinterization of the material was obtained for temperatures as high as 1900°C and over. The relative density of the obtained material was high, up to 97.0  0.6 % the theoretical density for 2200°C sintering temperature. An intense grain growth took place while sintering. The final microstructure exhibited a grain size distribution range from 1.0 to 2.5 m, depending on the sintering conditions. Such grain growth strongly depends on the sintering time, not so much on the sintering temperature.


2014 ◽  
Vol 788 ◽  
pp. 329-333
Author(s):  
Rui Zhou ◽  
Xiao Gang Diao ◽  
Jun Chen ◽  
Xiao Nan Du ◽  
Guo Ding Yuan ◽  
...  

Effects of sintering temperatures on the microstructure and mechanical performance of SPS M3:2 high speed steel prepared by spark plasma sintering was studied. High speed steel sintering curve of continuous heating from ambient temperature to 1200°C was estimated to analyze the sintering processes and sintering temperature range. The sintering temperature within this range was divided into groups to investigate hardness, relative density and microstructure of M3:2 high-speed steel. Strip and quadrate carbides were observed inside the equiaxed grains. SPS sintering temperature at 900°C can lead to nearly full densification with grain size smaller than 20μm. The hardness and bending strength are higher than that of the conventionally powder metallurgy fabricated ones sintered at 1270°C. However, fracture toughness of the high speed steel is lower than that of the conventional powder metallurgy steels. This can be attributed to the shape and distribution of M6C carbides which reduce the impact toughness of high speed steels.


2011 ◽  
Vol 43 (1) ◽  
pp. 327-339 ◽  
Author(s):  
Yuhong Xiong ◽  
Dongming Liu ◽  
Ying Li ◽  
Baolong Zheng ◽  
Chris Haines ◽  
...  

2018 ◽  
Vol 24 (S1) ◽  
pp. 1494-1495
Author(s):  
Xiaomi Zhang ◽  
Zhong-Zhen Luo ◽  
Sumanta Sarkar ◽  
Mercouri G. Kanatzidis ◽  
Vinayak P. Dravid

Sign in / Sign up

Export Citation Format

Share Document