The effect of microstructure on the mechanical properties of friction stir welded 5A06 Al Alloy

2018 ◽  
Vol 735 ◽  
pp. 382-393 ◽  
Author(s):  
Shujun Chen ◽  
Xiaoxu Li ◽  
Xiaoqing Jiang ◽  
Tao Yuan ◽  
Yazhou Hu
Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3906 ◽  
Author(s):  
Yang Han ◽  
Xiaoqing Jiang ◽  
Tao Yuan ◽  
Shujun Chen ◽  
Dongxiao Li ◽  
...  

Ultra-thin plates have great potential for applications in aircraft skin, the packaging industry, and packaging of electronic products. Herein, 1 mm-thick 5A06 Al alloy was welded with friction stir welding. The microstructural evolution of the welds was investigated in detail with optical microscopy, scanning electron microscopy, and electron backscatter diffraction. The results showed that the friction stir welds of 1 mm-thick 5A06 Al alloy were well formed without obvious defect and with a minimum thickness reduction of 0.025 mm. Further, the grain size and the proportion of low-angle grain boundaries decreased with decreasing welding speed, because of the increasing degree of dynamic recrystallization. Among all of the welded joints, the welding speed of 100 mm/min yielded the smallest grain size and the highest proportion of high-angle grain boundaries, and thus the best mechanical properties. Specifically, the tensile strength of the joint was greater than that of the base material, while the elongation reached 80.83% of the base material.


2022 ◽  
Vol 207 ◽  
pp. 114306
Author(s):  
Shengli Li ◽  
Napat Vajragupta ◽  
Abhishek Biswas ◽  
Wenshen Tang ◽  
Hao Wang ◽  
...  

2006 ◽  
Vol 15-17 ◽  
pp. 345-350 ◽  
Author(s):  
Chang Yong Lee ◽  
Won Bae Lee ◽  
Yun Mo Yeon ◽  
Keun Song ◽  
Jeong Hoon Moon ◽  
...  

The microstructure and mechanical properties of spot friction stir welded A 5052 alloy were investigated with insertion depth of welding tool. As the insertion depth of welding tool increased, the size of stirring zone increased and the thickness of upper sheet decreased. The value of shear load was the lowest at the shallowest insertion depth and increased to the highest value of 3.35 kN at a 1.6mm of insertion depth. An increase in the pin insertion depth beyond 1.6mm did not result in further increase in the lap shear load. Spot friction stir welded joints showed shear fracture mode at shallower insertion depths and fracture mode changed to plug fracture mode as the insertion depth was deeper.


Sign in / Sign up

Export Citation Format

Share Document