Anisotropic mechanical properties and deformation behavior of low-carbon high-strength steel component fabricated by wire and arc additive manufacturing

2020 ◽  
Vol 787 ◽  
pp. 139514
Author(s):  
Laibo Sun ◽  
Fengchun Jiang ◽  
Ruisheng Huang ◽  
Ding Yuan ◽  
Chunhuan Guo ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 216
Author(s):  
Laibo Sun ◽  
Fengchun Jiang ◽  
Ruisheng Huang ◽  
Ding Yuan ◽  
Chunhuan Guo ◽  
...  

Wire and arc additive manufacturing (WAAM) is a novel technique for fabricating large and complex components applied in the manufacturing industry. In this study, a low-carbon high-strength steel component deposited by WAAM for use in ship building was obtained. Its microstructure and mechanical properties as well as fracture mechanisms were investigated. The results showed that the microstructure consisted of an equiaxed zone, columnar zone, and inter-layer zone, while the phases formed in different parts of the deposited component were different due to various thermal cycles and cooling rates. The microhardness of the bottom and top varied from 290 HV to 260 HV, caused by temperature gradients and an inhomogeneous microstructure. Additionally, the tensile properties in transversal and longitudinal orientations show anisotropy characteristics, which was further investigated using a digital image correlation (DIC) method. This experimental fact indicated that the longitudinal tensile property has an inferior performance and tends to cause stress concentrations in the inter-layer areas due to the inclusion of more inter-layer zones. Furthermore, electron backscattered diffraction (EBSD) was applied to analyze the difference in Taylor factor between the inter-layer area and deposited area. The standard deviation of the Taylor factor in the inter-layer area was determined to be 0.907, which was larger than that in the deposited area (0.865), indicating nonuniform deformation and local stress concentration occurred in inter-layer area. Finally, as observed from the fracture morphology on the fractured surface of the sample, anisotropy was also approved by the comparison of the transversal and longitudinal tensile specimens.


2014 ◽  
Vol 783-786 ◽  
pp. 21-26
Author(s):  
Xiao Jun Liang ◽  
Ming Jian Hua ◽  
Anthony J. DeArdo

Thermomechanical controlled processing is a very important way to control the microstructure and mechanical properties in low carbon, high strength steel. This is especially true in the case of bainite formation, where the complexity of the austenite-bainite transformation makes the control of the processing important. In this study, a low carbon, high manganese steel containing niobium was investigated to better understand the roles of austenite conditioning and cooling rates on the bainitic phase transformation. Specimens were compared with and without deformation, and followed by seven different cooling rates ranging between 0.5°C/s and 40°C/s. The CCT curves showed that the transformation behaviors and temperatures are very different. The different bainitic microstructures which varied with austenite deformation and cooling rates will be discussed.


Author(s):  
Johanna Müller ◽  
Jonas Hensel ◽  
Klaus Dilger

AbstractAdditive manufacturing with steel opens up new possibilities for the construction sector. Especially direct energy deposition processes like DED-arc, also known as wire arc additive manufacturing (WAAM), is capable of manufacturing large structures with a high degree of geometric freedom, which makes the process suitable for the manufacturing of force flow-optimized steel nodes and spaceframes. By the use of high strength steel, the manufacturing times can be reduced since less material needs to be deposited. To keep the advantages of the high strength steel, the effect of thermal cycling during WAAM needs to be understood, since it influences the phase transformation, the resulting microstructure, and hence the mechanical properties of the material. In this study, the influences of energy input, interpass temperature, and cooling rate were investigated by welding thin walled samples. From each sample, microsections were analyzed, and tensile test and Charpy-V specimens were extracted and tested. The specimens with an interpass temperature of 200 °C, low energy input and applied active cooling showed a tensile strength of ~ 860–900 MPa, a yield strength of 700–780 MPa, and an elongation at fracture between 17 and 22%. The results showed the formation of martensite for specimens with high interpass temperatures which led to low yield and high tensile strengths (Rp0.2 = 520–590 MPa, Rm = 780–940 MPa) for the specimens without active cooling. At low interpass temperatures, the increase of the energy input led to a decrease of the tensile and the yield strength while the elongation at fracture as well as the Charpy impact energy increased. The formation of upper bainite due to the higher energy input can be avoided by accelerated cooling while martensite caused by high interpass temperatures need to be counteracted by heat treatment.


2014 ◽  
Vol 783-786 ◽  
pp. 685-691
Author(s):  
Subrata Chatterjee ◽  
S.K. Ghosh ◽  
P.S. Bandyopadhyay

A low-carbon, titanium and niobium (Ti-Nb) bearing and a low-carbon titanium, niobium and copper (Ti-Nb-Cu) bearing ultra high strength steel have been thermo-mechanically processed on a laboratory scale unit. Evolution of microstructure and mechanical properties of the above air cooled steels have been studied at different finish rolling temperatures (FRTs). Microstructural characterization reveals largely a mixture of granular bainite and bainitic ferrite along with the precipitation of microalloying carbide/carbonitride particles and/or Cu-rich precipitates. (Ti-Nb) bearing steel yields higher yield strength (1114-1143 MPa) along with higher tensile strength (1591-1688 MPa) and moderate ductility (12-13%) as compared to (Ti-Nb-Cu) bearing steel having yield strength (934-996 MPa) combined with tensile strength (1434-1464 MPa) and similar ductility (13%) for the selected range of 850-750°C FRT. Due to higher strength-ductility combinations, these present investigated steels can be regarded as the replacement material for ballistic applications as well as other sectors like defense, pipeline, cars, pressure vessels, ships, offshore platforms, aircraft undercarriages and rocket motor casings etc. Key words: Thermo-mechanical controlled processing, ultra high strength steel, microstructure, mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document