Effects of training on the thermomechanical behavior of NiTiHf and NiTiZr high temperature shape memory alloys

2020 ◽  
Vol 794 ◽  
pp. 139857 ◽  
Author(s):  
O. Karakoc ◽  
K.C. Atli ◽  
A. Evirgen ◽  
J. Pons ◽  
R. Santamarta ◽  
...  
Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1522
Author(s):  
Mohammadreza Nematollahi ◽  
Guher P. Toker ◽  
Keyvan Safaei ◽  
Alejandro Hinojos ◽  
S. Ehsan Saghaian ◽  
...  

Laser powder bed fusion has been widely investigated for shape memory alloys, primarily NiTi alloys, with the goal of tailoring microstructures and producing complex geometries. However, processing high temperature shape memory alloys (HTSMAs) remains unknown. In our previous study, we showed that it is possible to manufacture NiTiHf HTSMA, as one of the most viable alloys in the aerospace industry, using SLM and investigated the effect of parameters on defect formation. The current study elucidates the effect of process parameters (PPs) on the functionality of this alloy. Shape memory properties and the microstructure of additively manufactured Ni-rich NiTiHf alloys were characterized across a wide range of PPs (laser power, scanning speed, and hatch spacing) and correlated with energy density. The optimum laser parameters for defect-free and functional samples were found to be in the range of approximately 60–100 J/mm3. Below an energy density of 60 J/mm3, porosity formation due to lack-of-fusion is the limiting factor. Samples fabricated with energy densities of 60–100 J/mm3 showed comparable thermomechanical behavior in comparison with the starting as-cast material, and samples fabricated with higher energy densities (>100 J/mm3) showed very high transformation temperatures but poor thermomechanical behavior. Poor properties for samples with higher energies were mainly attributed to the excessive Ni loss and resultant change in the chemical composition of the matrix, as well as the formation of cracks and porosities. Although energy density was found to be an important factor, the outcome of this study suggests that each of the PPs should be selected carefully. A maximum actuation strain of 1.67% at 400 MPa was obtained for the sample with power, scan speed, and hatch space of 100 W, 400 mm/s, and 140 µm, respectively, while 1.5% actuation strain was obtained for the starting as-cast ingot. These results can serve as a guideline for future studies on optimizing PPs for fabricating functional HTSMAs.


Metals ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 511 ◽  
Author(s):  
Matthew Carl ◽  
Jesse Smith ◽  
Brian Van Doren ◽  
Marcus Young

2020 ◽  
Vol 9 (5) ◽  
pp. 9972-9984 ◽  
Author(s):  
I. López-Ferreño ◽  
J.F. Gómez-Cortés ◽  
T. Breczewski ◽  
I. Ruiz-Larrea ◽  
M.L. Nó ◽  
...  

2021 ◽  
Vol 30 (3) ◽  
pp. 035027
Author(s):  
Deyan Kong ◽  
Jie Li ◽  
Anru Guo ◽  
Jianxin Yu ◽  
Xinli Xiao

2021 ◽  
Vol 1016 ◽  
pp. 1802-1810
Author(s):  
Hiromichi Matsuda ◽  
Masayuki Shimojo ◽  
Hideyuki Murakami ◽  
Yoko Yamabe-Mitarai

As new generation of high-temperature shape memory alloys, high-entropy alloys (HEAs) have been attracted for strong solid-solution hardened alloys due to their severe lattice distortion and sluggish diffusion. TiPd is the one potential high-temperature shape memory alloys because of its high martensitic transformation temperature above 500 °C. As constituent elements, Zr expected solid-solution hardening, Pt expected increase of transformation temperature, Au expected keeping transformation temperature, and Co expected not to form harmful phase. By changing the alloy composition slightly, two HEAs and two medium entropy alloys (MEAs) were prepared. Only two MEAs, Ti45Zr5Pd25Pt20Au5, and Ti45Zr5Pd25Pt20Co5 had the martensitic transformation. The perfect recovery was obtained in Ti45Zr5Pd25Pt20Co5 during the repeated thermal cyclic test, training, under 200 MPa. On the other hand, the small irrecoverable strain was remained in Ti45Zr5Pd25Pt20Au5 during the training under 150 MPa because of the small solid-solution hardening effect. It indicates that Ti45Zr5Pd25Pt20Co5 is the one possible HT-SMA working between 342 and 450 °C.


Sign in / Sign up

Export Citation Format

Share Document