Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation

Author(s):  
Jingjing Zhang ◽  
Youping Yi ◽  
Shiquan Huang ◽  
Xianchang Mao ◽  
Hailin He ◽  
...  
2019 ◽  
Vol 116 (6) ◽  
pp. 605
Author(s):  
Tao Zhang ◽  
Huapu Sha ◽  
Lei Li ◽  
Shihong Lu ◽  
Hai Gong

7055 aluminum alloy is widely used in manufacture of key components in fields of aerospace. Hot forming is the vital process for manufacture of components. Dynamic recrystallization (DRX) plays a significant role in grain refinement. Hot compressions and metallographic tests are conducted. Equations of DRX kinetics are fitted by least square method and finite element models (FEM) coupled with DRX kinetics equations are established to study the effects of forming parameters on microstructure evolution. The results show that true stress increases with ascending strain rate and decreases with ascending temperature. Large strain, small strain rate and high temperature are beneficial to sufficient DRX fraction and grain refinement. Deformation energy and thermally activated motion of atoms and molecules resulting from large strain and high temperature contribute to dynamic nucleation; meanwhile, small strain rate provides sufficient time for growth of recrystallized grains. The FEM results agree with experiments.


Author(s):  
Muhammed O.H Amuda ◽  
Taiwo F. Lawal ◽  
Esther T Akinlabi

The current characterization of the rheological behavior during high temperature deformation in AA7075 is presented. The prevailing understanding in the literature is limited to the consideration of process parameters in isolation of microstructural features and the dynamics at the deformation zone in relation to geometry of the die tool and frictional conditions. Multiplicity of phenomena such as dynamic recovery (DRV), discontinuous dynamic recrystallization (DDRX), continuous dynamic recrystallization (CDRX), and geometric dynamic recrystallization (GDRX); are reported to dictates the dynamics in play during high temperature deformation of the alloy. Therefore, a need to appropriately characterize the flow behavior in AA7075 alloy during high temperature thermo mechanical processing that would involve an integrative study of concerned process parameters, metallurgical features and conditions at the deformation zone is imperative in order to achieve wholesome understanding of the flow behavior in AA7075 aluminum alloy during high temperature deformation.


2011 ◽  
Vol 109 ◽  
pp. 161-164
Author(s):  
Huie Hu ◽  
Xiao Dong Kong ◽  
Zhen Hai Shao

Soften behavior of 7050 aluminum alloy was investigated by high temperature compression tests conducted at 460 °C with different strain rates of 0.1, 1, 10 and 100 s-1. The results show that all the volume fractions of recrystallized grain and substructed grain of the 7050 aluminum alloy deformed at 460 °C with different strain rates are higher than 35% and 20%, respectively. Dynamic recovery and dynamic recrystallization are primary soften mechanism of the 7050 aluminum alloy deformation at 460 °C, which is not sensitive to strain rate. The recryatallization nucleation mechanisms of the 7050 aluminum alloy deformed at 460 °C include in grain boundary arch, subgrain growth and subgrain merging.


Alloy Digest ◽  
1995 ◽  
Vol 44 (7) ◽  

Abstract ALUMINUM ALLOY 201.0 is a structural casting alloy available as sand, permanent mold and investment castings. It is used in structural casting members, applications requiring high tensile and yield strengths with moderate elongation, and where high strength and energy-absorption capacity are needed. This datasheet provides information on composition, physical properties, and elasticity as well as creep and fatigue. It also includes information on high temperature performance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: AL-336. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1994 ◽  
Vol 43 (10) ◽  

Abstract Duralcan F3S.xxS is a heat treatable aluminum alloy-matrix gravity composite. The base alloy is similar to Aluminum 359 (Alloy Digest Al-188, July 1969); the discontinuously reinforced composite is silicon carbide. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness and fatigue. It also includes information on high temperature performance. Filing Code: AL-329. Producer or source: Alcan Aluminum Corporation.


Alloy Digest ◽  
1990 ◽  
Vol 39 (1) ◽  

Abstract ALCOA ALUMINUM ALLOY 7050 is an aluminum-zinc-copper-magnesium alloy with a superior combination of strength, stress-corrosion cracking resistance and toughness, particularly in thick sections. In thin sections it also possesses an excellent combination of properties that are important for aerospace applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Al-233. Producer or source: Aluminum Company of America. Originally published as Aluminum 7050, January 1979, revised January 1990.


Sign in / Sign up

Export Citation Format

Share Document