In vitro response of human osteoblasts to multi-step sol–gel derived bioactive glass nanoparticles for bone tissue engineering

2014 ◽  
Vol 36 ◽  
pp. 206-214 ◽  
Author(s):  
Jian Ping Fan ◽  
Priya Kalia ◽  
Lucy Di Silvio ◽  
Jie Huang
2013 ◽  
Vol 33 (3) ◽  
pp. 1102-1108 ◽  
Author(s):  
Bo Lei ◽  
Kwan-Ha Shin ◽  
Da-Young Noh ◽  
In-Hwan Jo ◽  
Young-Hag Koh ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2711
Author(s):  
Ana S. Neto ◽  
Daniela Brazete ◽  
José M.F. Ferreira

The combination of calcium phosphates with bioactive glasses (BG) has received an increased interest in the field of bone tissue engineering. In the present work, biphasic calcium phosphates (BCP) obtained by hydrothermal transformation of cuttlefish bone (CB) were coated with a Sr-, Mg- and Zn-doped sol-gel derived BG. The scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The initial CB structure was maintained after hydrothermal transformation (HT) and the scaffold functionalization did not jeopardize the internal structure. The results of the in-vitro bioactivity after immersing the BG coated scaffolds in simulated body fluid (SBF) for 15 days showed the formation of apatite on the surface of the scaffolds. Overall, the functionalized CB derived BCP scaffolds revealed promising properties, but further assessment of the in-vitro biological properties is needed before being considered for their use in bone tissue engineering applications.


2016 ◽  
Vol 23 (3) ◽  
pp. 245-256 ◽  
Author(s):  
Sima Shahabi ◽  
Yashar Rezaei ◽  
Fathollah Moztarzadeh ◽  
Farhood Najafi

AbstractWe developed degradable poly(propylene fumarate)/bioactive glass (PPF/BG) composite scaffolds based on a sintered microsphere technique and investigated the effects of BG content on the characteristics of these composite scaffolds. Immersion in a simulated body fluid (SBF) was used to evaluate the surface reactivity of composite scaffolds. The surface of composite scaffolds was covered with hydroxycarbonate apatite layer after 7 days of immersion. Ion concentration analyses revealed a decrease in P concentration and an increase in Si, Ca, and Sr concentrations in SBF immersed with composite scaffolds during the 3-week period. The Ca and P uptake rates decreased after 4 days of incubation. This coincided with the decrease of the Si release rate. These data lend support to the suggestion that the Si released from the BG content of scaffolds present in the polymer matrix was involved in the formation of the Ca-P layer. The evaluation of the in vitro degradation of composite microspheres revealed that the weight of scaffolds remained relatively constant during the first 3 weeks and then started to decrease slowly, losing 10.5% of their initial mass by week 12. Our results support the concept that these new bioactive, degradable composite scaffolds may be used for bone tissue engineering applications.


Materials ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 1957-1974 ◽  
Author(s):  
Ulrike Rottensteiner ◽  
Bapi Sarker ◽  
Dominik Heusinger ◽  
Diana Dafinova ◽  
Subha Rath ◽  
...  

2019 ◽  
Vol 94 ◽  
pp. 516-523 ◽  
Author(s):  
Adrian Chlanda ◽  
Przemysław Oberbek ◽  
Marcin Heljak ◽  
Ewa Kijeńska-Gawrońska ◽  
Tomasz Bolek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document