In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid

2014 ◽  
Vol 40 ◽  
pp. 455-466 ◽  
Author(s):  
Mohd Talha ◽  
C.K. Behera ◽  
O.P. Sinha
RSC Advances ◽  
2014 ◽  
Vol 4 (26) ◽  
pp. 13340 ◽  
Author(s):  
Mohd Talha ◽  
C. K. Behera ◽  
Sudershan Kumar ◽  
Om Pal ◽  
Gurmeet Singh ◽  
...  

2012 ◽  
Vol 727-728 ◽  
pp. 1238-1242 ◽  
Author(s):  
Roger Borges ◽  
Antônio Carlos da Silva ◽  
Juliana Marchi

Among bioceramics materials, bioglasses which exhibits either a bioactive or resorbable behavior has been studied for many applications, such as bone substitutive and regeneration. When in contact with body fluid, the bioglasses can induce the formation of a hydroxyapatite surface layer. In this paper, we studied the bioactivity of a bioglass containing 48 wt %SiO2, 27 wt% Na2O, 19 wt % CaO and 6 wt %P2O5. After fusion and annealing, the samples were immersed in SBF for different periods, up to 14 days. The samples were characterized through XRD, DRIFT and SEM before and after bioactivity experiments. The overall results suggest the formation of a surface layer of consisting of hydroxyapatite, which was crystallized within seven days after in vitro experiments, leading to a suitable bioactivity. Moreover, the samples showed a glass network with high cohesion due to calcium addition, leading to materials with high corrosion resistance.


Materials ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 26 ◽  
Author(s):  
Mohamed Hussein ◽  
Madhan Kumar ◽  
Robin Drew ◽  
Nasser Al-Aqeeli

2011 ◽  
Vol 7 (2) ◽  
pp. 829-840 ◽  
Author(s):  
J.J. Blaker ◽  
S.N. Nazhat ◽  
V. Maquet ◽  
A.R. Boccaccini

2011 ◽  
Vol 471-472 ◽  
pp. 325-330 ◽  
Author(s):  
K. Venkateswarlu ◽  
N. Rameshbabu ◽  
Arumugam Chandra Bose ◽  
V. Muthupandi ◽  
S. Subramanian

Nanostructured titania/hydroxyapatite (HA) composite layer was developed on commercially pure titanium (Cp Ti) implant material by plasma electrolytic processing (PEP) technique in order to improve its bioactivity and corrosion resistance under physiological conditions. The phases present in the developed composite layer were studied by X-ray diffraction (XRD) technique. The surface morphology and thickness of the composite layers were observed by scanning electron microscopy (SEM). The corrosion characteristics of the developed layer were studied by potentiodynamic polarization scan under simulated body fluid (7.4 pH Hanks solution) and simulated osteoclast (4.5 pH) conditions. The in-vitro bioactivity of the composite layers was studied by using Kokubu’s simulated body fluid (SBF) solution. The X-ray diffractograms reveal the presence of anatase TiO2 and HA phases in the developed layer. The SEM results confirm the pore-free morphology of the implant material surface and the thickness of the developed composite layer was observed to be 110 ± 5 µm for 12 min of PEP. The potentiodynamic polarization study shows an improved corrosion resistance and the in-vitro bioactivity test results indicate enhanced apatite forming ability of PEP treated Cp Ti surfaces compared to that of the untreated Cp Ti, under simulated body fluid conditions.


2014 ◽  
Vol 633 ◽  
pp. 418-421 ◽  
Author(s):  
Chen Ma ◽  
Yan Gao ◽  
Li Jie Qu ◽  
Mu Qin Li ◽  
Jin Long Yue ◽  
...  

In order to improve the corrosion resistance and bioactivity of magnesium alloy coated by ultrasound micro-arc oxidation (UMAO), different content of n-TiO2 was added into silicate electrolyte. Electrochemical corrosion and simulated body fluid (SBF) soaking were conducted, and the surface morphology, phase structure and composition also were analyzed. The results indicated that Ecorr and Icorr of UMAO biocoatings with n-TiO2 increased and decreased an order of magnitude with increase of n-TiO2, respectively. The corrosion resistance of coatings with adding 4.8g/L n-TiO2 into electrolyte was the best. After soaking in SBF, the samples increased loose weight firstly and then increased weight to form Mg3Ca (CO3)4, Mg10Cl (OH)18·5H2O and Na4Mg2(PO4) ·2H2O new phases and Mg, MgO, MgSiO3 were still exit, which showed that good bioactivity of the UMAO coatings with n-TiO2.


Author(s):  
Manjubala Bharti ◽  
Ranjan K Sahu

Background: Deceleration of the corrosion rate of Mg by surface chemical method via hydrofluoric acid treatment has a special interest because it is a simple, cost-effective, and efficient method for the coating of interior as well as the exterior part of any size and shape of implant material. However, conversion coating by hydrofluoric acid treatment fails to produce a long-term stable coating of Mg in ionic solutions caused by the formation of cracks on the surface during the process. Consequently, the corrosive ions of the SBF solution enter through the cracks that accelerate the dissolution by local galvanic corrosion. On the above view, we aim to develop a simple strategy for enhancement of corrosion resistance of the hydrofluoric acid treated Mg bioimplant material. Methods: This method is comprised of dip coating of hydrofluoric acid treated Mg sample in the polymethylhydrosiloxane followed by curing at 170°C for 30 min. The samples were characterized by electron probe microanalysis, X-ray photoelectron spectroscopy and electrochemical test. Results: The electrochemical test results reveal that the corrosion rate of the coated Mg sample in the simulated body fluid solution is decreased by more than 8500 times than the bare sample. The long term immersion data indicate that the chemical resistance of the coated Mg sample in the SBF solution even after 25 days is better than the bare Mg metal. Conclusion: Polymethylhydrosiloxane coating is efficient to enhance the corrosion resistance of hydrofluoric acid treated Mg metal in simulated body fluid solution.


Sign in / Sign up

Export Citation Format

Share Document