Mechanical degradation of porous titanium with entangled structure filled with biodegradable magnesium in Hanks' solution

2015 ◽  
Vol 57 ◽  
pp. 349-354 ◽  
Author(s):  
Qiuyan Li ◽  
Guofeng Jiang ◽  
Cunlong Wang ◽  
Jie Dong ◽  
Guo He
TAPPI Journal ◽  
2018 ◽  
Vol 17 (01) ◽  
pp. 31-37
Author(s):  
Bryan McCulloch ◽  
John Roper ◽  
Kaitlin Rosen

Barrier coatings are used in applications including food packaging, dry goods, and consumer products to prevent transport of different compounds either through or into paper and paperboard substrates. These coatings are useful in packaging to contain active ingredients, such as fragrances, or to protect contents from detrimental substances, such as oxygen, water, grease, or other chemicals of concern. They also are used to prevent visual changes or mechanical degradation that might occur if the paper becomes saturated. The performance and underlying mechanism depends on the barrier coating type and, in particular, on whether the barrier coating is designed to prevent diffusive or capillary transport. Estimates on the basis of fundamental transport phenomena and data from a broad screening of different barrier materials can be used to understand the limits of various approaches to construct barrier coatings. These estimates also can be used to create basic design rules for general classes of barrier coatings.


2014 ◽  
Vol 52 (3) ◽  
pp. 203-209 ◽  
Author(s):  
San Kang ◽  
Ji Woon Lee ◽  
Soong Keun Hyun ◽  
Byong Pil Lee ◽  
Myoung Gyun Kim ◽  
...  

2006 ◽  
Vol 9 (2) ◽  
pp. 127-134
Author(s):  
Yao Wu ◽  
Hu Li ◽  
Tun Yuan ◽  
Chunlin Deng ◽  
Bangcheng Yang ◽  
...  

1973 ◽  
Vol 1 (4) ◽  
pp. 354-362 ◽  
Author(s):  
F. R. Martin ◽  
P. H. Biddison

Abstract Treads made with emulsion styrene-butadiene copolymer (SBR), solution SBR, polybutadiene (BR), and a 60/40 emulsion SBR/BR mixture were built as four-way tread sections on G78-15 belted bias tires, which were driven over both concrete and gravel-textured highways and on a small, circular, concrete test track. The tires were front mounted. When driven on concrete highway, all except the BR tread had either crumbled- or liquid-appearing surfaces, thought to have been formed by mechanical degradation or fatigue. When cornered on concrete, these materials formed small cylindrical particles or rolls. The BR tread had a smooth, granular-textured surface when driven on concrete highway and a ridge or sawtooth abrasion pattern when cornered on concrete. All the materials appeared rough and torn when run on gravel-textured highway. The differences in wear surface formed on BR tread and the other three are thought to be due primarily to the relatively high resilience of BR.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Author(s):  
Florian Strauss ◽  
Lea de Biasi ◽  
A-Young Kim ◽  
Jonas Hertle ◽  
Simon Schweidler ◽  
...  

Measures to improve the cycling performance and stability of bulk-type all-solid-state batteries (SSBs) are currently being developed with the goal of substituting conventional Li-ion battery (LIB) technology. As known from liquid electrolyte based LIBs, layered oxide cathode materials undergo volume changes upon (de)lithiation, causing mechanical degradation due to particle fracture, among others. Unlike solid electrolytes, liquid electrolytes are somewhat capable of accommodating morphological changes. In SSBs, the rigidity of the materials used typically leads to adverse contact loss at the interfaces of cathode material and solid electrolyte during cycling. Hence, designing zero- or low-strain electrode materials for application in next-generation SSBs is desirable. In the present work, we report on novel Co-rich NCMs, NCM361 (60% Co) and NCM271 (70% Co), showing minor volume changes up to 4.5 V vs Li<sup>+</sup>/Li, as determined by <i>operando</i> X-ray diffraction and pressure measurements of LIB pouch and pelletized SSB cells, respectively. Both cathode materials exhibit good cycling performance when incorporated into SSB cells using argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl solid electrolyte, albeit their morphology and secondary particle size have not yet been optimized.


2019 ◽  
Vol 15 ◽  
pp. 963-970 ◽  
Author(s):  
Sora Park ◽  
Jeung Gon Kim

Mechanochemical polymerization is a rapidly growing area and a number of polymeric materials can now be obtained through green mechanochemical synthesis. In addition to the general merits of mechanochemistry, such as being solvent-free and resulting in high conversions, we herein explore rate acceleration under ball-milling conditions while the conventional solution-state synthesis suffer from low reactivity. The solvent-free mechanochemical polymerization of trimethylene carbonate using the organocatalysts 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) are examined herein. The polymerizations under ball-milling conditions exhibited significant rate enhancements compared to polymerizations in solution. A number of milling parameters were evaluated for the ball-milling polymerization. Temperature increases due to ball collisions and exothermic energy output did not affect the polymerization rate significantly and the initial mixing speed was important for chain-length control. Liquid-assisted grinding was applied for the synthesis of high molecular weight polymers, but it failed to protect the polymer chain from mechanical degradation.


Sign in / Sign up

Export Citation Format

Share Document