Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics

2016 ◽  
Vol 59 ◽  
pp. 1007-1015 ◽  
Author(s):  
Lu Xie ◽  
Haiyang Yu ◽  
Yi Deng ◽  
Weizhong Yang ◽  
Li Liao ◽  
...  
2008 ◽  
Vol 368-372 ◽  
pp. 1206-1208 ◽  
Author(s):  
Yan Bao Li ◽  
Dong Xu Li ◽  
Wen Jian Weng

Biphasic tricalcium phosphate (BTCP) powders composed of α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate (β-TCP) were prepared using amorphous calcium phosphate (ACP) precursor after heat treatment at 800oC. The in vitro dissolution behavior of the powders was examined after soaked in 0.1M NaAc-HAc buffer solution for different times. It was revealed that the Ca2+ and PO4 3- concentration, and pH value of the BTCP-soaked solution are higher than those of the α-TCP- and β-TCP-soaked solutions. The dissolution behavior of BTCP powders was explained. The specific dissolution behavior of BTCP powders can widen the biodegradation range of calcium phosphate family.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 215 ◽  
Author(s):  
Marcelo Dutra Duque ◽  
Daniela Amaral Silva ◽  
Michele Georges Issa ◽  
Valentina Porta ◽  
Raimar Löbenberg ◽  
...  

A biowaiver is accepted by the Brazilian Health Surveillance Agency (ANVISA) for immediate-release solid oral products containing Biopharmaceutics Classification System (BCS) class I drugs showing rapid drug dissolution. This study aimed to simulate plasma concentrations of fluconazole capsules with different dissolution profiles and run population simulation to evaluate their bioequivalence. The dissolution profiles of two batches of the reference product Zoltec® 150 mg capsules, A1 and A2, and two batches of other products (B1 and B2; C1 and C2), as well as plasma concentration–time data of the reference product from the literature, were used for the simulations. Although products C1 and C2 had drug dissolutions < 85% in 30 min at 0.1 M HCl, simulation results demonstrated that these products would show the same in vivo performance as products A1, A2, B1, and B2. Population simulation results of the ln-transformed 90% confidence interval for the ratio of Cmax and AUC0–t values for all products were within the 80–125% interval, showing to be bioequivalent. Thus, even though the in vitro dissolution behavior of products C1 and C2 was not equivalent to a rapid dissolution profile, the computer simulations proved to be an important tool to show the possibility of bioequivalence for these products.


Author(s):  
Madhabi Lata Shuma ◽  
Shimul Halder

The objective of the present study was to compare the in vitro equivalence of different orally disintegrating tablets (ODT) of Desloratadine (DES) available in Bangladesh pharmaceutical market with the reference brand. The in vitro dissolution study was carried out using the United States Pharmacopoeia (USP) paddle method and a comparative study were also carried out with the reference brand. Other pharmacopoeial and non-pharmacopoeial quality assessment parameters including hardness, friability, water absorption ratio, and disintegration time etc. were also evaluated. From the results of the dissolution profile of the commercially available products, it found majority of the products didn’t exhibited compendial requirements in dissolution behavior to the reference brand with model-independent approach ( f2 > 50, f1 < 15) and showed statistically significant differences. Additionally, the data of different physical quality parameters revealed that all commercial products complied with the official specifications. From these findings, it could be suggested that the DES-ODT formulations’ available in the Bangladesh market could be prescribed; however additional experiments might require to clarify the interchangeability among the products.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Feng Wang ◽  
Timothy J. Barnes ◽  
Clive A. Prestidge

AbstractWe investigate the physicochemical characteristics of celecoxib (CEL) entrapped within particles of an oxidized porous silicon matrix (pSiox); determine the oral dose response of CEL compared to pure drug and innovator formulation; develop in vivo-in vitro correlation (IVIVC). CEL was loaded into a pSiox matrix by solvent partitioning, with the physical state of the CEL characterized by FTIR, DSC, TGA and XRD, and correlated with in vitro dissolution behavior. Single dose pharmacokinetic parameters of orally dosed CEL were determined in fasted rats for aqueous suspensions of pure CEL, Celebrexr and CEL-pSiox microparticles. Physicochemical testing of CEL-pSiox formulation confirmed the entrapment of CEL within porous nanostructure in an amorphous or non-crystalline form. CEL-pSiox demonstrated superior pharmacokinetics compared with CEL particles or Celebrexr, i.e. increased absolute bioavailability (96.2% vs. 65.2% vs. 88.1%), increased C


2021 ◽  
Author(s):  
Sharon Kehoe ◽  
Marie-Laurence Tremblay ◽  
Aisling Coughlan ◽  
Mark R. Towler ◽  
Jan K. Rainey ◽  
...  

Experimental embolic particles based on a novel zinc-silicate glass system have been biologically evaluated for potential consideration in transcatheter arterial embolization procedures. In addition to controlling the cytotoxicity and haemocompatibility for such embolic particles, its glass structure may mediate specific responses via dissolution in the physiological environment. In a 120 h in-vitro dissolution study, ion release levels for silicon (Si4+), sodium (Na+), calcium (Ca2+), zinc (Zn2+), titanium (Ti4+), lanthanum (La3+), strontium (Sr2+), and magnesium (Mg2+), were found to range from 0.04 to 5.41 ppm, 0.27–2.28 ppm, 2.32–8.47 ppm, 0.16–0.20 ppm, 0.12–2.15 ppm, 0.16–0.49 ppm and 0.01–0.12 ppm, respectively for the series of glass compositions evaluated. Initial release of Zn2+ (1.93–10.40 ppm) was only evident after 120 h. All compositions showed levels of cell viabilities ranging from 61.31 ± 4.33% to 153.7 ± 1.25% at 25%–100% serial extract dilutions. The conformational state of fibrinogen, known to induce thrombi, indicated that no changes were induced with respect of the materials dissolution by-products. Furthermore, the best-in-class experimental composition showed equivalency to contour PVA in terms of inducing platelet adhesion. The data generated here provides requisite evidence to continue to in-vivo pre-clinical evaluation using the best-in-class experimental composition evaluated.


2021 ◽  
Author(s):  
Sharon Kehoe ◽  
Marie-Laurence Tremblay ◽  
Aisling Coughlan ◽  
Mark R. Towler ◽  
Jan K. Rainey ◽  
...  

Experimental embolic particles based on a novel zinc-silicate glass system have been biologically evaluated for potential consideration in transcatheter arterial embolization procedures. In addition to controlling the cytotoxicity and haemocompatibility for such embolic particles, its glass structure may mediate specific responses via dissolution in the physiological environment. In a 120 h in-vitro dissolution study, ion release levels for silicon (Si4+), sodium (Na+), calcium (Ca2+), zinc (Zn2+), titanium (Ti4+), lanthanum (La3+), strontium (Sr2+), and magnesium (Mg2+), were found to range from 0.04 to 5.41 ppm, 0.27–2.28 ppm, 2.32–8.47 ppm, 0.16–0.20 ppm, 0.12–2.15 ppm, 0.16–0.49 ppm and 0.01–0.12 ppm, respectively for the series of glass compositions evaluated. Initial release of Zn2+ (1.93–10.40 ppm) was only evident after 120 h. All compositions showed levels of cell viabilities ranging from 61.31 ± 4.33% to 153.7 ± 1.25% at 25%–100% serial extract dilutions. The conformational state of fibrinogen, known to induce thrombi, indicated that no changes were induced with respect of the materials dissolution by-products. Furthermore, the best-in-class experimental composition showed equivalency to contour PVA in terms of inducing platelet adhesion. The data generated here provides requisite evidence to continue to in-vivo pre-clinical evaluation using the best-in-class experimental composition evaluated.


2019 ◽  
Vol 64 (02) ◽  
pp. 27-34
Author(s):  
Emilija Janeva ◽  
Liljana Anastasova ◽  
Irena Slaveska Spirevska ◽  
Tatjana Rusevska ◽  
Tanja Bakovska Stoimenova ◽  
...  

Dissolution testing of generic immediate release solid dosage forms represents a valuable tool to obtain dissolution profiles and to establish the similarity/dissimilarity between tested dosage forms. In this study, the in vitro dissolution profiles of generic immediate-release moxifloxacin (MOX) film coated tablets and a referent pharmaceutical product were compared and evaluated. The dissolution behavior of the generic product was investigated in three different dissolution media (pH=1.2, 4.5 and 6.8). The amount of dissolved MOX was determined using validated UV spectrophotometric method. For comparison of the dissolution behavior, the similarity factor, f2, was used. The dissolution profile of the generic product showed a release of >85 % MOX in the time frame of 30 min, in all the tested dissolution media. The similarity factor, f2, calculated from the comparison of the dissolution profiles of the generic and the referent pharmaceutical product in pH=1.2 dissolution medium was 50, 58, thus the products were established as similar. Based on the results of our study, the dissolution similarity between the generic MOX immediate-release film coated tablet and the referent product could be successfully used as a part of the approach to ensure their in vivo bioequivalence. Keywords: moxifloxacin, immediate-release solid dosage forms, dissolution, in vitro similarity


Sign in / Sign up

Export Citation Format

Share Document