Effect of annealing temperature on mechanical and antibacterial properties of Cu-bearing titanium alloy and its preliminary study of antibacterial mechanism

2018 ◽  
Vol 93 ◽  
pp. 495-504 ◽  
Author(s):  
Cong Peng ◽  
Shuyuan Zhang ◽  
Ziqing Sun ◽  
Ling Ren ◽  
Ke Yang
2022 ◽  
Vol 13 ◽  
pp. 100176
Author(s):  
Richard Bright ◽  
Daniel Fernandes ◽  
Jonathan Wood ◽  
Dennis Palms ◽  
Anouck Burzava ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 845 ◽  
Author(s):  
Francisco Javier Puerta-Morales ◽  
Jorge Salguero Gomez ◽  
Severo Raul Fernandez-Vidal

Helical milling has been positioned as an alternative to conventional drilling, where the advantages it offers make it very attractive for use on difficult-to-machine alloys such as the titanium alloy UNS R56400. However, the correlation between the indicator of hole quality and the kinematic parameters has rarely been studied. The kinematics are what bring most advantages and that is why it is necessary to know their influence. In this aspect, there are different focuses of problems associated with the complexity of the process kinematics, which makes it necessary to undertake a deeper analysis of the process and to carry out a preliminary study. To address this problem, a DOE (Design of Experiments) is proposed to identify the sensitivity and the main trends of the properties that define the quality holes with respect to the kinematic parameters. At the same time, a nomenclature is proposed to unify and avoid misinterpretations. This study has allowed us to obtain conclusive results that offer very relevant information for future research


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Nagat Areid ◽  
Eva Söderling ◽  
Johanna Tanner ◽  
Ilkka Kangasniemi ◽  
Timo O. Närhi

Purpose. To explore earlyS. mutansbiofilm formation on hydrothermally induced nanoporous TiO2surfacesin vivoand to examine the effect of UV light activation on the biofilm development.Materials and Methods. Ti-6Al-4V titanium alloy discs (n = 40) were divided into four groups with different surface treatments: noncoated titanium alloy (NC); UV treated noncoated titanium alloy (UVNC); hydrothermally induced TiO2coating (HT); and UV treated titanium alloy with hydrothermally induced TiO2coating (UVHT).In vivoplaque formation was studied in 10 healthy, nonsmoking adult volunteers. Titanium discs were randomly distributed among the maxillary first and second molars. UV treatment was administered for 60 min immediately before attaching the discs in subjects’ molars. Plaque samples were collected 24h after the attachment of the specimens. Mutans streptococci (MS), non-mutans streptococci, and total facultative bacteria were cultured, and colonies were counted.Results. The plaque samples of NC (NC + UVNC) surfaces showed over 2 times more oftenS. mutanswhen compared to TiO2surfaces (HT + UVHT), with the number of colonized surfaces equal to 7 and 3, respectively.Conclusion. Thisin vivostudy suggested that HT TiO2surfaces, which we earlier showed to improve blood coagulation and encourage human gingival fibroblast attachmentin vitro, do not enhance salivary microbial (mostly mutans streptococci) adhesion and initial biofilm formation when compared with noncoated titanium alloy. UV light treatment provided Ti-6Al-4V surfaces with antibacterial properties and showed a trend towards less biofilm formation when compared with non-UV treated titanium surfaces.


2019 ◽  
Vol 35 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Zheng Ma ◽  
Rui Liu ◽  
Ying Zhao ◽  
Ling Ren ◽  
Ke Yang

2021 ◽  
Vol 316 ◽  
pp. 821-826
Author(s):  
Alexey B. Bulkov ◽  
Vladimir V. Peshkov ◽  
Vladimir F. Selivanov

The influence of the parameters of the vacuum annealing mode on the thickness of the embrittled layers, formed on the surface of titanium as a result of its interaction with the residual gases of the vacuumed space, is studied. The thickness and structure of the layers were determined on samples made of VT6 alloy obtained from sheet metal with a thickness of 3 mm. Annealing of samples in the temperature range of 500-750 °C was performed with air dilution from 10 to 3∙10-2 PA. The dimensions of the embrittled layers were determined by measuring the zone of brittle crack propagation in the fracture of the samples, and measuring the distance between the surface cracks in the embrittled layers, formed during bending deformation. To quantify the effect of vacuum annealing modes of sheet titanium alloy VT6 on the depth of the embrittled part of the formed oxide layer, it is proposed to use a parabolic relationship, characterized by the degree of growth and the constant of the embrittled layer. By processing experimental data, the effect of annealing time, temperature, and air dilution on the growth kinetics of the embrittled layers was established. Based on the obtained kinetic regularities of the growth of the embrittled layers, nomograms are constructed, to determine the size of the embrittled layer formed at the heating stage at different speeds up to the specified annealing temperature.


2015 ◽  
Vol 84 (4) ◽  
pp. 403-406
Author(s):  
Piotr Holak ◽  
Marek Jalynski ◽  
Zdzisław Lekston ◽  
Izabella Babinska ◽  
Zbigniew Adamiak

This paper reports on the use of compression anastomosis clips (CAC) in cholecystoenterostomy in an animal model. Cholecystojejunostomy was performed in 6 pigs using implants made of nickel-titanium alloy in the form of elliptical springs with two-way shape memory. The applied procedure led to the achievement of tight anastomosis with a minimal number of complications and positive results of histopathological evaluations of the anastomotic site. The results of the study indicate that shape memory NiTi clips are a promising surgical tool for cholecystoenterostomy in cats and dogs.


Author(s):  
P. N. Medvedev ◽  
S. A. Naprienko ◽  
O. S. Kashapov ◽  
E. V. Filonova

A study of the structure of titanium alloy VT41 (Ti–Al–Si–Zr–Sn– β-stabilizers) was carried out on a sample subjected to hot upsetting in the (α+β)-region – conditions simulating the stamping of a disk of a gas turbine engine (GTE). The features of the formation of the textural state of primary and secondary globular grains, as well as the kinetics of their dissolution with an increase in the annealing temperature, have been determined. As a result of heat treatment at 995°C, the homogeneity of the alloy structure significantly increases comparing to the deformed state, which is associated with the recrystallization of lamellar and small-globular grains and the retention of primary globular grains of the α-phase. The sequence of structural changes has been established during the annealing within the temperature range from 950 to 1040°C.


Sign in / Sign up

Export Citation Format

Share Document