scholarly journals Investigation of electronic structure, morphological features, optical, colorimetric, and supercapacitor electrode properties of CoWO4 crystals

Author(s):  
Y.L. Oliveira ◽  
A.F. Gouveia ◽  
M.J.S. Costa ◽  
F.H.P. Lopes ◽  
J.C. Sczancoski ◽  
...  
Author(s):  
Necip Güven ◽  
Rodney W. Pease

Morphological features of montmorillonite aggregates in a large number of samples suggest that they may be formed by a dendritic crystal growth mechanism (i.e., tree-like growth by branching of a growth front).


Author(s):  
A. C. Reimschuessel ◽  
V. Kramer

Staining techniques can be used for either the identification of different polymers or for the differentiation of specific morphological domains within a given polymer. To reveal morphological features in nylon 6, we choose a technique based upon diffusion of the staining agent into accessible regions of the polymer.When a crystallizable polymer - such as nylon 6 - is cooled from the melt, lamellae form by chainfolding of the crystallizing long chain macromolecules. The regions between adjacent lamellae represent the less ordered amorphous domains into which stain can diffuse. In this process the lamellae will be “outlined” by the dense stain, giving rise to contrast comparable to that obtained by “negative” staining techniques.If the cooling of the polymer melt proceeds relatively slowly - as in molding operations - the lamellae are usually arranged in a radial manner. This morphology is referred to as spherulitic.


Author(s):  
C. S. Giggins ◽  
J. K. Tien ◽  
B. H. Kear ◽  
F. S. Pettit

The performance of most oxidation resistant alloys and coatings is markedly improved if the oxide scale strongly adheres to the substrate surface. Consequently, in order to develop alloys and coatings with improved oxidation resistance, it has become necessary to determine the conditions that lead to spallation of oxides from the surfaces of alloys. In what follows, the morphological features of nonadherent Al2O3, and the substrate surfaces from which the Al2O3 has spalled, are presented and related to oxide spallation.The Al2O3, scales were developed by oxidizing Fe-25Cr-4Al (w/o) and Ni-rich Ni3 (Al,Ta) alloys in air at 1200°C. These scales spalled from their substrates upon cooling as a result of thermally induced stresses. The scales and the alloy substrate surfaces were then examined by scanning and replication electron microscopy.The Al2O3, scales from the Fe-Cr-Al contained filamentary protrusions at the oxide-gas interface, Fig. 1(a). In addition, nodules of oxide have been developed such that cavities were formed between the oxide and the substrate, Fig. 1(a).


Author(s):  
S.J. Splinter ◽  
J. Bruley ◽  
P.E. Batson ◽  
D.A. Smith ◽  
R. Rosenberg

It has long been known that the addition of Cu to Al interconnects improves the resistance to electromigration failure. It is generally accepted that this improvement is the result of Cu segregation to Al grain boundaries. The exact mechanism by which segregated Cu increases service lifetime is not understood, although it has been suggested that the formation of thin layers of θ-CuA12 (or some metastable substoichiometric precursor, θ’ or θ”) at the boundaries may be necessary. This paper reports measurements of the local electronic structure of Cu atoms segregated to Al grain boundaries using spatially resolved EELS in a UHV STEM. It is shown that segregated Cu exists in a chemical environment similar to that of Cu atoms in bulk θ-phase precipitates.Films of 100 nm thickness and nominal composition Al-2.5wt%Cu were deposited by sputtering from alloy targets onto NaCl substrates. The samples were solution heat treated at 748K for 30 min and aged at 523K for 4 h to promote equilibrium grain boundary segregation. EELS measurements were made using a Gatan 666 PEELS spectrometer interfaced to a VG HB501 STEM operating at 100 keV. The probe size was estimated to be 1 nm FWHM. Grain boundaries with the narrowest projected width were chosen for analysis. EDX measurements of Cu segregation were made using a VG HB603 STEM.


Author(s):  
M. S. Bischel ◽  
J. M. Schultz

Despite its rapidly growing use in commercial applications, the morphology of LLDPE and its blends has not been thoroughly studied by microscopy techniques. As part of a study to examine the morphology of a LLDPE narrow fraction and its blends with HDPE via SEM, TEM and AFM, an appropriate etchant is required. However, no satisfactory recipes could be found in the literature. Mirabella used n-heptane, a solvent for LLDPE, as an etchant to reveal certain morphological features in the SEM, including faint banding in spherulites. A 1992 paper by Bassett included a TEM micrograph of an axialite of LLDPE, etched in a potassium permanganate solution, but no details were given.Attempts to use n-heptane, at 60°C, as an etchant were unsuccessful: depending upon thickness, samples swelled and increased in diameter by 5-10% or more within 15 minutes. Attempts to use the standard 3.5% potassium permanganate solution for HDPE were also unsuccessful: the LLDPE was severely overetched. Weaker solutions were also too severe.


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


Author(s):  
Ming-Hui Yao ◽  
David J. Smith

The chemical properties of catalysts often depend on the size, shape and structure of the supported metal particles. To characterize these morphological features and relate them to catalysis is one of the main objectives for HREM study of catalysts. However, in plan view imaging, details of the shape and structure of ultra-fine supported particles (<2nm) are often obscured by the overlapping contrast from the support, and supported sub-nanometer particles are sometimes even invisible. Image simulations may help in the interpretation at HREM images of supported particles in particular to extract useful information about the size, shape and structure of the particles. It should also be a useful tool for evaluating the imaging conditions in terms of visibility of supported particles. P. L. Gai et al have studied contrast from metal particles supported on amorphous material using multislice simulations. In order to better understand the influence of a crystalline support on the visibility and apparent morphological features of supported fine particles, we have calculated images of Pt and Re particles supported on TiO2(rutile) in both plan view and profile view.


Sign in / Sign up

Export Citation Format

Share Document