scholarly journals Functionally Graded Composite Materials: An Overview

2014 ◽  
Vol 5 ◽  
pp. 1291-1299 ◽  
Author(s):  
Gururaja Udupa ◽  
S. Shrikantha Rao ◽  
K.V. Gangadharan
2021 ◽  
Author(s):  
Uğur Gökmen ◽  
Zübeyde Özkan ◽  
Sema Bilge Ocak

Abstract Gamma-ray and neutron shielding properties of the AA6082 + TiO2 (0-50wt.%) functionally graded composite materials (FGCMs) were investigated using the PSD software. The values of the mean free path (MFP), half-value layer (HVL), linear attenuation coefficients (LAC), mass attenuation coefficient (MAC), tenth-value layer (TVL), exposure buildup factors (EBF), effective atomic number (Zeff), effective conductivity (Ceff), and fast neutron removal cross-sections (FNRC) were found for the energy range between 0.015–15 MeV. The increase in the TiO2 content in the AA6082 composite material has raised the values of MAC and LAC. The calculations for the EBFs were carried out using the G-P fitting method for the energy range between 0.015–15 MeV and penetration depth of up to 40 mfp. The results revealed that HVL values ranged between 0.01-0.116 cm, TVL values ranged between 0.01-0.385 cm, FNRC values ranged between 7.918-10.017 cm-1, and Ceff values ranged between 5.67 x1010 and 9.85x1010 S/m. The AA6082 + TiO2 (50%) composite material was observed to provide the maximum photon and neutron shielding capacity since it offered the highest Zeff, MAC, and FNRC values, and the lowest HVL value. In terms of several aspects, the research is considered original. Besides contributing to several technologies including nanotechnology and space technologies, present research’s results may contribute to nuclear technology.


2001 ◽  
Vol 702 ◽  
Author(s):  
Robert Lipton ◽  
Ani Velo

ABSTRACTIn this paper a methodology is introduced for the design of structural components made from composite materials for the control of stress. A numerical method is developed for designing functionally graded materials with minimum stress in prescribed sub-domains inside the structure.


2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


2018 ◽  
Vol 10 (04) ◽  
pp. 1850045 ◽  
Author(s):  
Qiang Chen ◽  
Guannan Wang ◽  
Xuefeng Chen

In order to satisfy the increasing computational demands of micromechanics, the Finite-Volume Direct Averaging Micromechanics (FVDAM) theory is developed in three-dimensional (3D) domain to simulate the multiphase heterogeneous materials whose microstructures are distributed periodically in the space. Parametric mapping, which endorses arbitrarily shaped and oriented hexahedral elements in the microstructure discretization, is employed in the unit cell solution. Unlike the finite-element (FE) technique, the expressions for local stiffness matrices are derived explicitly, enabling efficient global stiffness matrix assembly using an easily implementable algorithm. To demonstrate the accuracy and efficiency of the proposed theory, the homogenized moduli and localized stress distributions produced by the FE analyses are given for comparisons, where excellent agreement is always obtained for the 3D microstructures with different geometrical and material properties. Finally, a multi-scale stress analysis of functionally graded composite cylinders is conducted. This extension further increases the FVDAM’s range of applicability and opens new opportunities for pursuing other areas, providing an attractive alternative to the FE-based approaches that may be compared.


Sign in / Sign up

Export Citation Format

Share Document