scholarly journals Synthesis of Co3O4 Micro-needles on the Cell Walls and their Effect on the Sound Absorption Behavior of Open Cell Al Foam

2014 ◽  
Vol 4 ◽  
pp. 191-195 ◽  
Author(s):  
Yuelu Ren ◽  
Zhendong Li ◽  
Fusheng Han
2013 ◽  
Vol 91 ◽  
pp. 242-244 ◽  
Author(s):  
Yuelu Ren ◽  
Kun Wang ◽  
Bo Zhu ◽  
Xinfu Wang ◽  
Xingfu Wang ◽  
...  
Keyword(s):  

2014 ◽  
Vol 783-786 ◽  
pp. 1509-1512 ◽  
Author(s):  
Yun Jie Li ◽  
Yue Lu Ren ◽  
Zhen Dong Li ◽  
Fu Sheng Han

In the present study, needle like micro-Co3O4 rods were synthesized on the cell walls of open celled Al foam. The microstructure and phase composition of micro-rods and sound absorption properties of resultant samples were characterized. Compared with original Al foams, the modified ones showed enhanced sound absorption capacities, particularly at low frequencies, which were more obvious as the length of Co3O4 rods increased. The improvement is related to increased air flow resistance owing to increased roughness of the cell walls.


RSC Advances ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 7653-7660 ◽  
Author(s):  
Bai Xue ◽  
Jianguo Deng ◽  
Junhua Zhang

A series of multiporous open-cell poly(vinyl formal) (PVF) foams were obtained by crosslinking poly(vinyl alcohol) (PVA) with different contents of formaldehyde in aqueous solution.


2021 ◽  
pp. 103872
Author(s):  
Behzad Mohammadi ◽  
Amir Ershad-Langroudi ◽  
Gholamreza Moradi ◽  
Abdolrasoul Safaiyan ◽  
Peymaneh Habibi

2014 ◽  
Vol 1662 ◽  
Author(s):  
Max Larner ◽  
John Acker ◽  
Lilian P. Dávila

ABSTRACTLightweight porous foams have been of particular interest in recent years, since they have a very unique set of properties which can be significantly different from their solid parent materials. These properties arise from their random porous structure which is generated through specialized processing techniques. Their unique structure gives these materials interesting properties which allow them to be used in diverse applications. In particular, highly porous Al foams have been used in aircraft components and sound insulation; however due to the difficulty in processing and the random nature of the foams, they are not well understood and thus have not yet been utilized to their full potential. The objective of this study was to integrate experiments and simulations to determine whether a relationship exists between the relative density (porous density/bulk density) and the mechanical properties of open-cell Al foams. Compression experiments were performed using an Instron Universal Testing Machine (IUTM) on ERG Duocel open-cell Al foams with 5.8% relative density, with compressive loads ranging from 0-6 MPa. Foam models were generated using a combination of an open source code, Voro++, and MATLAB. A Finite Element Method (FEM)-based software, COMSOL Multiphysics 4.3, was used to simulate the mechanical behavior of Al foam structures under compressive loads ranging from 0-2 MPa. From these simulated structures, the maximum von Mises stress, volumetric strain, and other properties were calculated. These simulation results were compared against data from compression experiments. CES EduPack software, a materials design program, was also used to estimate the mechanical properties of open-cell foams for values not available experimentally, and for comparison purposes. This program allowed for accurate prediction of the mechanical properties for a given percent density foam, and also provided a baseline for the Al foam samples tested via the IUTM method. Predicted results from CES EduPack indicate that a 5.8% relative density foam will have a Young’s Modulus of 0.02-0.92 GPa while its compressive strength will be 0.34-3.37 MPa. Overall results revealed a relationship between pores per inch and selected mechanical properties of Al foams. The methods developed in this study can be used to efficiently generate open-cell foam models, and to combine experiments and simulations to calculate structure-property relationships and predict yielding and failure, which may help in the pursuit of simulation-based design of metallic foams. This study can help to improve the current methods of characterizing foams and porous materials, and enhance knowledge about theirproperties for novel applications.


2012 ◽  
Vol 457-458 ◽  
pp. 253-256 ◽  
Author(s):  
Guang Chun Yao ◽  
Huan Liu ◽  
Bin Na Song

The aluminum foam materials have studied for the last 15 years in China, from laboratory experiments to industrialized scale. we can manufacture 800mm×2000mm aluminum foam board products. The essential parameters of our aluminum foam product are as follows, density: 0.3~0.6g/cm3; porosity: 77%~88%; pore diameter 5MPa. Some properties of aluminium foam materials were studied such as sound absorption, energy absorption, impact bending strength of aluminum (steel) plate/Al foam sandwich, etc.


2014 ◽  
Vol 134 ◽  
pp. 268-271 ◽  
Author(s):  
Gaohui Wu ◽  
Ruifeng Li ◽  
Yu Yuan ◽  
Longtao Jiang ◽  
Dongli Sun

Sign in / Sign up

Export Citation Format

Share Document