Stability studies of PbS sensitised TiO 2 nanotube arrays for visible light photocatalytic applications by X-ray photoelectron spectroscopy (XPS)

2016 ◽  
Vol 42 ◽  
pp. 303-310 ◽  
Author(s):  
N.B. Rahna ◽  
Vijila Kalarivalappil ◽  
Manoj Nageri ◽  
Suresh C. Pillai ◽  
Steven J. Hinder ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Xinlei Zhang ◽  
Juan Zhou ◽  
Yufen Gu ◽  
Ding Fan

Highly ordered nitrogen-doped titanium dioxide (N-doped TiO2) nanotube arrays were prepared by anodic oxidation method and then annealed in a N2atmosphere to obtain N-doped TiO2nanotube arrays. The samples were characterized with scanning electron microscope (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectrum (XPS), and UV-visible spectrophotometry (UV-vis) spectrum. Degradation of the insecticide acephate under the visible light was used as a model to examine the visible-light photocatalytic activity of N-doped TiO2nanotube arrays. The results show that N type doping has no notable effects on the morphology and structure of TiO2nanotube arrays. After N type doping, the N replaces a small amount of O in TiO2, forming an N–Ti–O structure. This shifts the optical absorption edge and enhances absorption of the visible light. N-doped TiO2nanotube arrays subjected to annealing at 500°C in N2atmosphere show the strongest photocatalytic activity and reach a degradation rate of 84% within 2 h.


2013 ◽  
Vol 860-863 ◽  
pp. 907-910
Author(s):  
Xiao Xia Lin ◽  
Jia Liu ◽  
De Gang Fu

B-doped TiO2nanotube arrays (B-TNTs) were synthesized by anodization method combined with dip-calcination technique. The physicochemical properties and surface morphology were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and UV-Vis diffuse reflectance spectrum (DRS). Methyl blue (MB) solution was utilized as the degradation model to evaluate the photocatalytic activity of B-TNTs under visible light irradiation. The results show B-TNTs shifts the absorption edge of TiO2nanotube arrays to the visible light region and B-TNTs displays higher photocatalytic activity compared with undoped TNTs.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Xiuwen Cheng ◽  
Xiujuan Yu ◽  
Zipeng Xing ◽  
Lisha Yang

Anatase mesoporous titanium dioxide codoped with nitrogen and chlorine (N-Cl-TiO2) photocatalysts were synthesized through simple one-step sol-gel reactions in the presence of ammonium chloride. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflection spectrum (UV-vis DRS). XRD results indicated that codoping with nitrogen and chlorine could effectively retard the phase transformation of TiO2from anatase to rutile and the growth of the crystallite sizes. XPS revealed that nitrogen and chlorine elements were incorporated into the lattice of TiO2through substituting the lattice oxygen atoms. DRS exhibited that the light absorption of N-Cl-TiO2in visible region was greatly improved. As a result, the band gap of TiO2was reduced to 2.12 eV. The photocatalytic activity of the as-synthesized TiO2was evaluated for the degradation of RhB and phenol under visible light irradiation. It was found that N-Cl-TiO2catalyst exhibited higher visible light photocatalytic activity than that of P25 TiO2and N-TiO2, which was attributed to the small crystallite size, intense light absorption in visible region, and narrow band gap.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Min Zhang ◽  
Dandan Lu ◽  
Guotian Yan ◽  
Juan Wu ◽  
Jianjun Yang

Mo,N-codoped TiO2nanotube arrays (TNAs) were fabricated by a two-step method consisting of electrochemical anodization and subsequent magnetron sputtering of Mo. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The results showed that the Mo,N-codoped TiO2nanotube arrays exhibited higher visible light absorbance and remarkably enhanced photocurrent density and photocatalytic activity compared with single N-doped TiO2. The highly efficient photoelectrochemical and photocatalytic activity is associated with the codoping effect between Mo and N, which plays a key role in producing new states, narrowing the bandgap, and reducing the recombination thereby effectively improving the visible light absorption and photocatalytic activity of TNAs.


2013 ◽  
Vol 690-693 ◽  
pp. 511-517 ◽  
Author(s):  
Xi Kang ◽  
Jing Qi ◽  
Long Ye ◽  
Hong You ◽  
Li Jiang Hu

Ag⁄N co–doped TiO2 nanotube arrays (TNTs) were prepared by anodic oxidation, a certain amount of Ag deposited on the surface of TNTs by photodeposition and annealing post-treatment. The doped TNTs were characterized by field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–vis diffusion reflection spectroscopy (UV–vis DRS). The photocatalytic activities of the prepared TiO2 were evaluated by degrading rhodamine B (RhB) under visible light irradiation (≤ 420 nm). The photocatalytic degradation efficiency of the Ag/N-TNTs obtained for the degradation of RhB are 0.32 times, 0.6 times and 1.86 times higher than that of TNTs, N–TNTs, AgTNTs, respectively.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Quan Gu ◽  
Huaqiang Zhuang ◽  
Jinlin Long ◽  
Xiaohan An ◽  
Huan Lin ◽  
...  

The C-doped CdO photocatalysts were simply prepared by high-temperature solid-state process. The as-prepared photocatalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the carbon was doped into CdO, resulting in the red-shift of the optical absorption of CdO. The photocatalytic behavior of CdO and C-doped CdO was evaluated under the visible light irradiation by using the photocatalytic hydrogen evolution as a model reaction. The C-doped CdO photocatalysts had higher photocatalytic activity over parent CdO under visible light irradiation. The results indicated that the H2production was due to the existence of CdS and the enhancement of visible light photocatalytic activity of H2production was originated from the doping of carbon into the CdO lattice. The probably reaction mechanism was also discussed and proposed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Min Zhang ◽  
Juan Wu ◽  
DanDan Lu ◽  
Jianjun Yang

A series of W, N codoped TiO2nanotube arrays with different dopant contents were fabricated by anodizing in association with hydrothermal treatment. The samples were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible light diffuse reflection spectroscopy. Moreover, the photocatalytic activity of W and N codoped TiO2nanotube arrays was evaluated by degradation of methylene blue under visible light irradiation. It was found that N in codoped TNAs exists in the forms of Ti-N-O, while W exists as W6+by substituting Ti in the lattice of TiO2. In the meantime, W and N codoping successfully extends the absorption of TNAs into the whole visible light region and results in remarkably enhanced photocatalytic activity under visible light irradiation. The mechanism of the enhanced photocatalytic activity could be attributed to (i) increasing number of hydroxyl groups on the surface of TNAs after the hydrothermal treatment, (ii) a strong W-N synergistic interaction leads to produce new states, narrow the band gap which decrease the recombination effectively, and then greatly increase the visible light absorption and photocatalytic activity; (iii) W ions with changing valences in all codoped samples which are considered to act as trapping sites, effectively decrease the recombination rate of electrons and holes, and improve the photocatalytic activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Biying Li ◽  
Xiuwen Cheng ◽  
Xiujuan Yu ◽  
Lei Yan ◽  
Zipeng Xing

Fe-N-S-tri-dopedTiO2photocatalysts were synthesized by one step in the presence of ammonium ferrous sulfate. The resulting materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflection spectrum (UV-Vis DRS). XPS analysis indicated that Fe (III) and S6+were incorporated into the lattice ofTiO2through substituting titanium atoms, and N might coexist in the forms of substitutional N (O-Ti-N) and interstitial N (Ti-O-N) in tridopedTiO2. XRD results showed that tri-doping with Fe, N, and S elements could effectively retard the phase transformation ofTiO2from anatase to rutile and growth of crystallite size. DRS results revealed that the light absorbance edge ofTiO2in visible region was greatly improved by tri-doping with Fe, N, and S elements. Further, the photocatalytic activity of the as-synthesized samples was evaluated by the degradation of phenol under visible light irradiation. It was found that Fe-N-S-tri-dopedTiO2catalyst exhibited higher visible light photocatalytic activity than that of pureTiO2and P25TiO2, which was mainly attributed to the small crystallite size, intense light absorbance in visible region, and narrow bandgap energy.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Cheng-Ching Hu ◽  
Tzu-Chien Hsu ◽  
Li-Heng Kao

Nitrogen-doped TiO2nanotubes with enhanced visible light photocatalytic activity have been synthesized using commercial titania P25 as raw material by a facile P25/urea cohydrothermal method. Morphological and microstructural characteristics were conducted by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption/desorption isotherms; chemical identifications were performed using X-ray photoelectron spectroscopy, and the interstitial nitrogen linkage to the TiO2nanotubes is identified. The photocatalytic activity of nitrogen-doped TiO2nanotubes, evaluated by the decomposition of rhodamine B dye solution under visible light using UV-vis absorption spectroscopy, is found to exhibit ~ four times higher than that of P25 and undoped titanate nanotubes. Factors affecting the photocatalytic activity are analyzed; it is found that the nitrogen content and surface area, rather than the crystallinity, are more crucial in affecting the photocatalytic efficiency of the nitrogen-doped TiO2nanotubes.


Sign in / Sign up

Export Citation Format

Share Document