scholarly journals Fabrication of Mo+N-Codoped TiO2Nanotube Arrays by Anodization and Sputtering for Visible Light-Induced Photoelectrochemical and Photocatalytic Properties

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Min Zhang ◽  
Dandan Lu ◽  
Guotian Yan ◽  
Juan Wu ◽  
Jianjun Yang

Mo,N-codoped TiO2nanotube arrays (TNAs) were fabricated by a two-step method consisting of electrochemical anodization and subsequent magnetron sputtering of Mo. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). The results showed that the Mo,N-codoped TiO2nanotube arrays exhibited higher visible light absorbance and remarkably enhanced photocurrent density and photocatalytic activity compared with single N-doped TiO2. The highly efficient photoelectrochemical and photocatalytic activity is associated with the codoping effect between Mo and N, which plays a key role in producing new states, narrowing the bandgap, and reducing the recombination thereby effectively improving the visible light absorption and photocatalytic activity of TNAs.

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2763
Author(s):  
Zuzanna Bielan ◽  
Szymon Dudziak ◽  
Agnieszka Sulowska ◽  
Daniel Pelczarski ◽  
Jacek Ryl ◽  
...  

Among various methods of improving visible light activity of titanium(IV) oxide, the formation of defects and vacancies (both oxygen and titanium) in the crystal structure of TiO2 is an easy and relatively cheap alternative to improve the photocatalytic activity. In the presented work, visible light active defective TiO2 was obtained by the hydrothermal reaction in the presence of three different oxidizing agents: HIO3, H2O2, and HNO3. Further study on the effect of used oxidant and calcination temperature on the physicochemical and photocatalytic properties of defective TiO2 was performed. Obtained nanostructures were characterized by X-ray diffractometry (XRD), specific surface area (BET) measurements, UV-Vis diffuse reflectance spectroscopy (DR-UV/Vis), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. Degradation of phenol as a model pollutant was measured in the range of UV-Vis and Vis irradiation, demonstrating a significant increase of photocatalytic activity of defective TiO2 samples above 420 nm, comparing to non-defected TiO2. Correlation of EPR, UV-Vis, PL, and photodegradation results revealed that the optimum concentration of HIO3 to achieve high photocatalytic activity was in the range of 20–50 mol%. Above that dosage, titanium vacancies amount is too high, and the obtained materials’ photoactivity was significantly decreased. Studies on the photocatalytic mechanism using defective TiO2 have also shown that •O2− radical is mainly responsible for pollutant degradation.


2013 ◽  
Vol 860-863 ◽  
pp. 907-910
Author(s):  
Xiao Xia Lin ◽  
Jia Liu ◽  
De Gang Fu

B-doped TiO2nanotube arrays (B-TNTs) were synthesized by anodization method combined with dip-calcination technique. The physicochemical properties and surface morphology were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and UV-Vis diffuse reflectance spectrum (DRS). Methyl blue (MB) solution was utilized as the degradation model to evaluate the photocatalytic activity of B-TNTs under visible light irradiation. The results show B-TNTs shifts the absorption edge of TiO2nanotube arrays to the visible light region and B-TNTs displays higher photocatalytic activity compared with undoped TNTs.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Nguyen Thi Lan ◽  
Vo Hoang Anh ◽  
Hoang Duc An ◽  
Nguyen Phi Hung ◽  
Dao Ngoc Nhiem ◽  
...  

In this study, C-N-S-tridoped TiO2 composite was fabricated from TiO2 prepared from ilmenite ore and thiourea by means of hydrothermal method. The obtained material was characterized by X-ray diffraction, Raman scattering spectroscopy, UV-Vis diffuse reflectance spectroscopy, nitrogen adsorption-desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It was found that C-N-S-tridoped TiO2 material has a large specific surface area, showing good photocatalytic activity on the degradation of antibiotic tetracycline in visible light region. The study on the mechanism of tetracycline photodegradation using the liquid chromatography with mass spectrometry was performed. It was found that tetracycline has been degraded over C-N-S-tridoped TiO2 catalyst into many different intermediates which can eventually be converted into CO2 and H2O. The kinetics of photocatalytic decomposition of tetracycline were investigated. In addition, the obtained material could catalyze well the degradation of other antibiotics (ciprofloxacin and chloramphenicol) and dyes (rhodamine-B, methylene blue, and organe red). The catalyst was stable after five recycles with slight loss of catalytic activity, which indicates great potential for practical application of C-N-S-tridoped TiO2 catalyst in treatment of wastewater containing tetracycline in particular or antibiotics in general.


2018 ◽  
Vol 78 (8) ◽  
pp. 1802-1811 ◽  
Author(s):  
Jiwei Huang ◽  
Changlong Yang ◽  
Qiang Song ◽  
Dongxue Liu ◽  
Li Li

Abstract A series of different ratios of Ag2S/ZnO/ZnS nanocomposites with visible light response were prepared by a microwave-assisted hydrothermal two-step method, whose composition, crystalline structure, morphology and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (UV–vis/DRS), photoluminescence spectrum (PL), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and N2 adsorption–desorption measurements. Results showed that as-composites mainly consisted of ZnS crystal phase, whose grain size increased obviously compared with non Ag2S samples. At the same time, due to the introduction of narrow band gap Ag2S, the synthesized composite can effectively increase the visible optical absorption of ZnO/ZnS composites. Among them, 1% Ag2S/ZnO/ZnS showed a mixed structure of nano-line and nano-particle, of which BET value increased significantly, and the morphology was more excellent. Photocatalytic activities of a series of Ag2S/ZnO/ZnS composites under different light sources were studied using methyl orange as a model molecule, and 1% Ag2S/ZnO/ZnS was taken as the best one. Meanwhile, 1% Ag2S/ZnO/ZnS also showed a good degradation effect on other dyes with different structures, and its degradation efficiency did not change significantly after three cycles, showing certain stability. In addition, composites with Ag2S loading of 1% possessed the highest hydrogen production ability of photolysis water, indicating that the introduction of Ag2S had significantly enhanced the catalytic performance.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qianzhi Xu ◽  
Xiuying Wang ◽  
Xiaoli Dong ◽  
Chun Ma ◽  
Xiufang Zhang ◽  
...  

S/Zn codoped TiO2nanomaterials were synthesized by a sol-gel method. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, transmission electron microscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology, structure, and optical properties of the prepared samples. The introduction of Zn and S resulted in significant red shift of absorption edge for TiO2-based nanomaterials. The photocatalytic activity was evaluated by degrading reactive brilliant red X-3B solution under simulated sunlight irradiation. The results showed S/Zn codoped TiO2exhibited higher photocatalytic activity than pure TiO2and commercial P25, due to the photosynergistic effect of obvious visible light absorption, efficient separation of photoinduced charge carriers, and large surface area. Moreover, the content of Zn and S in the composites played important roles in photocatalytic activity of TiO2-based nanomaterials.


2011 ◽  
Vol 287-290 ◽  
pp. 1640-1645 ◽  
Author(s):  
Min Guang Fan ◽  
Zu Zeng Qin ◽  
Zi Li Liu ◽  
Tong Ming Su

A series of BixY(2-x)O3photocatalysts were successfully prepared by a solid-state reaction and were subsequently characterized by powder X-ray diffraction, UV-vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS). The UV-vis diffuse reflectance spectra revealed that the BixY(2-x)O3samples absorbed light in the visible-light range (400-800 nm). The XPS results indicated that active oxygen species were generated on the Bi1.8Y0.2O3surface, which displayed a higher photocatalytic activity. When using photocatalytic degradation molasses fermentation wastewater as a model reaction, the Bi1.8Y0.2O3showed higher photocatalytic activity in comparison to Bi0.2Y1.8O3under visible-light irradiation.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jianhui Huang ◽  
Wahkit Cheuk ◽  
Yifan Wu ◽  
Frank S. C. Lee ◽  
Wingkei Ho

Bismuth-doped TiO2submicrospheres were synthesized by ultrasonic spray pyrolysis. The prepared bismuth-doped titania was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). Aqueous photocatalytic activity was evaluated by the decomposition of methyl orange under visible-light irradiation. The results indicate that doping of bismuth remarkably affects the phase composition, crystal structure, and the photocatalytic activity. The sample with 2% Bi exhibits the optimum photocatalytic activity.


2018 ◽  
Vol 9 ◽  
pp. 447-459 ◽  
Author(s):  
Patrycja Parnicka ◽  
Paweł Mazierski ◽  
Tomasz Grzyb ◽  
Wojciech Lisowski ◽  
Ewa Kowalska ◽  
...  

Nd-modified TiO2 photocatalysts have been obtained via hydrothermal (HT) and sol–hydrothermal (SHT) methods. The as-prepared samples were characterized by X-ray diffraction (XRD), BET surface area measurements, scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), luminescence spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the synthesized samples was evaluated by the degradation of phenol in aqueous solution under irradiation with UV–vis (λ > 350 nm) and vis (λ > 420 nm) light, as well as by the degradation of gaseous toluene under irradiation with vis (λmax = 415 nm) light. It was found that Nd-modified TiO2 is an efficient photocatalyst for the degradation of phenol and toluene under visible light. XPS analysis revealed that the photocatalyst prepared via HT method contains a three-times higher amount of hydroxy groups at the surface layer and a two-times higher amount of surface defects than that obtained by the SHT method. The photocatalytic efficiency of phenol and toluene degradation under vis irradiation in the presence of 0.25% Nd-TiO2(HT) reached 0.62 and 3.36 μmol·dm−1·min−1, respectively. Photocatalytic activity tests in the presence of Nd-TiO2 and scavenger confirm that superoxide radicals were responsible for the visible light-induced degradation of the model pollutant in aqueous solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Douga Nassoko ◽  
Yan-Fang Li ◽  
Jia-Lin Li ◽  
Xi Li ◽  
Ying Yu

Titanium dioxide (TiO2) doped with neodymium (Nd), one rare earth element, has been synthesized by a sol-gel method for the photocatalytic degradation of rhodamine-B under visible light. The prepared samples are characterized by X-ray diffractometer, Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller measurement. The results indicate that the prepared samples have anatase and brookite phases. Additionally, Nd as Nd3+may enter into the lattice ofTiO2and the presence of Nd3+substantially enhances the photocatalytic activity ofTiO2under visible light. In order to further explore the mechanism of photocatalytic degradation of organic pollutant, photoluminescence spectrometer and scavenger addition method have been employed. It is found that hydroxide radicals produced by Nd-dopedTiO2under visible light are one of reactive species for Rh-B degradation and photogenerated electrons are mainly responsible for the formation of the reactive species.


2018 ◽  
Vol 89 (7) ◽  
pp. 1332-1339
Author(s):  
Yehua Sun ◽  
Yuzhuo Luo ◽  
Yaofeng Zhu ◽  
Yaqin Fu

Biomass-derived silk fibroin (SF)-doped NaTaO3 catalysts were successfully synthesized by a simple hydrothermal process using SF as the dopant. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) analyses. The samples were tested as photocatalysts in the degradation of methylene blue under UV and visible light. XRD results showed the monoclinic structure of NaTaO3 lacking significant structural changes after anion doping. SEM and TEM images revealed the nanocubic morphology of the samples, the crystal particle sizes of which were about 100–300 nm. The XPS spectrum showed the peak of Ta4p3&N1s, indicating the combination of N and Ta. The UV-vis DRS results of the samples revealed a cut-off edge that red shifted from 315 nm of the pure NaTaO3 to 324 nm of the SF-doped counterpart. SF doping helped narrow the band gap and rendered the prepared sample sensitive to visible light. Under UV and visible-light irradiation, SF-doped NaTaO3 exhibited higher photocatalytic activity than that the undoped compound. SF-doped NaTaO3 samples also exhibited excellent stability during the recycling photocatalytic process.


Sign in / Sign up

Export Citation Format

Share Document