Nano-indentation of biomimetic artificial bone material based on porous Ti6Al4V substrate with Fe22Co22Ni22Ti22Al12 high entropy alloy coating

2021 ◽  
pp. 102659
Author(s):  
Dongni Liu ◽  
Zhichao Ma ◽  
Hongwei Zhao ◽  
Luquan Ren ◽  
Wei Zhang
Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 638 ◽  
Author(s):  
Wenyuan Cui ◽  
Wei Li ◽  
Wei-Ting Chen ◽  
Frank Liou

Ti6Al4V has been recognized as an attractive material, due to its combination of low density and favorable mechanical properties. However, its insufficient oxidation resistance has limited the high-temperature application. In this work, an AlCoCrFeNiTi0.5 high-entropy alloy (HEA) coating was fabricated on a Ti6Al4V substrate using laser metal deposition (LMD). The microstructure and isothermal oxidation behaviors were investigated. The microstructure of as-deposited HEA exhibited a Fe, Cr-rich A2 phase and an Al, Ni, Ti-enriched B2 phase. Its hardness was approximately 2.1 times higher than that of the substrate. The oxidation testing at 700 °C and 800 °C suggested that the HEA coating has better oxidation resistance than the Ti6Al4V substrate. The oxide scales of the Ti6Al4V substrate were mainly composed of TiO2, while continuous Al2O3 and Cr2O3 were formed in the HEA coatings and could be attributed to oxidation resistance improvement. This work provides an approach to mitigate the oxidation resistance of Ti6Al4V and explore the applicability of the HEA in a high-temperature environment.


2020 ◽  
Vol 530 ◽  
pp. 147205 ◽  
Author(s):  
Yan Cui ◽  
Junqi Shen ◽  
Sunusi Marwana Manladan ◽  
Keping Geng ◽  
Shengsun Hu

2019 ◽  
Vol 813 ◽  
pp. 159-164
Author(s):  
Carlos Alberto Souto ◽  
Gustavo Faria Melo da Silva ◽  
Laura Angelica Ardila Rodriguez ◽  
Aline C. de Oliveira ◽  
Kátia Regina Cardoso

Coatings with high entropy alloys of the AlCoCrFeNiV system were obtained by selective laser melting on low carbon steel substrates. The effect of the variation of the Fe and V contents as well as the laser processing parameters in the development of the coating were evaluated. The coatings were obtained from the simple powder mixtures of the high purity elemental components in a planetary ball mill. The coatings were obtained by using CO2 laser with a power of 100 W, diameter of 0.16 mm, and scan speed varying from 3 to 12 mm/s. Phase constituents, microstructure and hardness were investigated by XRD, SEM, and microhardness tester, respectively. Wear resistance measurements were carried out by the micro-abrasion method using ball-cratering tests. The coatings presented good adhesion to the substrate and high hardness, of the order of 480 to 650 HV. Most homogeneous coating with nominal composition was obtained by using the higher scan speed, 12 mm/s. Vanadium addition increased hardness and gave rise to a high entropy alloy coating composed by BCC solid solutions. Ball cratering tests conducted on HEA layer showing improvement of material wear resistance, when compared to base substrate, decreasing up to 88% its wear rate, from 1.91x10-6 mm3/Nmm to 0.23x10-6 mm3/Nmm.


2020 ◽  
Vol 517 ◽  
pp. 145980 ◽  
Author(s):  
Dechao Zhao ◽  
Tomiko Yamaguchi ◽  
Jinfeng Shu ◽  
Tatsuya Tokunaga ◽  
Tsubasa Danjo

2021 ◽  
Author(s):  
TengDa Di ◽  
XinYi Liang ◽  
FangYong Niu ◽  
ChenChen Song ◽  
DanLin Shu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document