Murine model of invasive pulmonary Aspergillosis: Follow-up of tissue injury, fungal burden and mortality with distinct elastase production strains

2019 ◽  
Vol 29 (2) ◽  
pp. 112-119 ◽  
Author(s):  
R.L.H. Silva ◽  
E. Rosa-Milani ◽  
M.O. Brunaldi ◽  
C.M.L. Maffei
2008 ◽  
Vol 52 (11) ◽  
pp. 4178-4180 ◽  
Author(s):  
Russell E. Lewis ◽  
Nathaniel D. Albert ◽  
Dimitrios P. Kontoyiannis

ABSTRACT In a neutropenic murine model of invasive pulmonary aspergillosis, prophylaxis with single doses of liposomal amphotericin B or micafungin at ≥5 mg/kg of body weight improved animal survival and suppressed the lung fungal burden for up to 7 days after infection, demonstrating the potential utility of infrequent dosing with these antifungals.


2005 ◽  
Vol 49 (7) ◽  
pp. 3028-3030 ◽  
Author(s):  
Joan Gavaldà ◽  
María-Teresa Martín ◽  
Pedro López ◽  
Xavier Gomis ◽  
José-Luís Ramírez ◽  
...  

ABSTRACT The efficacy of therapeutic aerosolized amphotericin B (AMB) was studied in a steroid-immunosuppressed murine model of invasive pulmonary aspergillosis. Nebulized liposomal AMB can be a valid approach to the treatment of this infection, with subjects showing significantly improved survival relative to that of subjects given intravenous deoxycholate AMB, as well as lower lung weights and pulmonary glucosamine levels.


2006 ◽  
Vol 50 (10) ◽  
pp. 3464-3466 ◽  
Author(s):  
Lisa Y. Chiang ◽  
Daniele E. Ejzykowicz ◽  
Zong-Qiang Tian ◽  
Leonard Katz ◽  
Scott G. Filler

ABSTRACT Ambruticins are a family of polyketides. The antifungal activity of an ambruticin, KOSN-2079, was tested in the mouse model of invasive aspergillosis. KOSN-2079 significantly reduced pulmonary fungal burdens and improved survival over that with the vehicle control. These results support the continued development of ambruticins as antifungal agents.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Vidmantas Petraitis ◽  
Ruta Petraitiene ◽  
Matthew W. McCarthy ◽  
Laura L. Kovanda ◽  
Myo H. Zaw ◽  
...  

ABSTRACT Invasive pulmonary aspergillosis (IPA) is an important cause of morbidity and mortality in immunocompromised patients. We hypothesized that simultaneous inhibition of biosynthesis of ergosterol in the fungal cell membrane and (1→3)-β-d-glucan in the cell wall, respectively, by the antifungal triazole isavuconazole (ISA) and the echinocandin micafungin (MFG) may result in improved outcomes in experimental IPA in persistently neutropenic rabbits. Treatments included ISA at 20 mg/kg of body weight/day (ISA20), 40 mg/kg/day (ISA40), and 60 mg/kg/day (ISA60); MFG at 2 mg/kg/day (MFG2); combinations of ISA20 and MFG2, ISA40 and MFG2, and ISA60 and MFG2; and no treatment (untreated controls [UC]). The galactomannan index (GMI) and (1→3)-β-d-glucan levels in serum were measured. The residual fungal burden (number of CFU per gram) was significantly reduced in ISA20-, ISA40-, ISA60-, ISA20-MFG2-, ISA40-MFG2-, and ISA60-MFG2-treated rabbits compared with that in MFG2-treated or UC rabbits (P < 0.01). Measures of organism-mediated pulmonary injury, lung weights, and pulmonary infarct score were lower in ISA40-MFG2-treated rabbits than in rabbits treated with ISA40 or MFG2 alone (P < 0.01). Survival was prolonged in ISA40-MFG2-treated rabbits in comparison to those treated with ISA40 or MFG2 alone (P < 0.01). These outcome variables correlated directly with significant declines in GMI and serum (1→3)-β-d-glucan levels during therapy. The GMI correlated with measures of organism-mediated pulmonary injury, lung weights (r = 0.764; P < 0.001), and pulmonary infarct score (r = 0.911; P < 0.001). In summary, rabbits receiving combination therapy with isavuconazole and micafungin demonstrated a significant dose-dependent reduction in the residual fungal burden, decreased pulmonary injury, prolonged survival, a lower GMI, and lower serum (1→3)-β-d-glucan levels in comparison to rabbits receiving isavuconazole or micafungin as a single agent.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Vidmantas Petraitis ◽  
Ruta Petraitiene ◽  
Aspasia Katragkou ◽  
Bo Bo Win Maung ◽  
Ethan Naing ◽  
...  

ABSTRACT Ibrexafungerp (formerly SCY-078) is a semisynthetic triterpenoid and potent (1→3)-β-d-glucan synthase inhibitor. We investigated the in vitro activity, pharmacokinetics, and in vivo efficacy of ibrexafungerp (SCY) alone and in combination with antimold triazole isavuconazole (ISA) against invasive pulmonary aspergillosis (IPA). The combination of ibrexafungerp and isavuconazole in in vitro studies resulted in additive and synergistic interactions against Aspergillus spp. Plasma concentration-time curves of ibrexafungerp were compatible with linear dose proportional profile. In vivo efficacy was studied in a well-established persistently neutropenic New Zealand White (NZW) rabbit model of experimental IPA. Treatment groups included untreated control (UC) rabbits and rabbits receiving ibrexafungerp at 2.5 (SCY2.5) and 7.5 (SCY7.5) mg/kg of body weight/day, isavuconazole at 40 (ISA40) mg/kg/day, or combinations of SCY2.5+ISA40 and SCY7.5+ISA40. The combination of SCY+ISA produced an in vitro synergistic interaction. There were significant in vivo reductions of residual fungal burden, lung weights, and pulmonary infarct scores in SCY2.5+ISA40, SCY7.5+ISA40, and ISA40 treatment groups versus those of the SCY2.5-treated, SCY7.5-treated, and UC (P < 0.01) groups. Rabbits treated with SCY2.5+ISA40 and SCY7.5+ISA40 had prolonged survival in comparison to that of the SCY2.5-, SCY7.5-, ISA40-treated, or UC (P < 0.05) groups. Serum galactomannan index (GMI) and (1→3)-β-d-glucan levels significantly declined in animals treated with the combination of SCY7.5+ISA40 in comparison to those of animals treated with SCY7.5 or ISA40 (P < 0.05). Ibrexafungerp and isavuconazole combination demonstrated prolonged survival, decreased pulmonary injury, reduced residual fungal burden, and lower GMI and (1→3)-β-d-glucan levels in comparison to those of single therapy for treatment of IPA. These findings provide an experimental foundation for clinical evaluation of the combination of ibrexafungerp and an antimold triazole for treatment of IPA.


2015 ◽  
Vol 59 (5) ◽  
pp. 2875-2881 ◽  
Author(s):  
Nathan P. Wiederhold ◽  
Laura K. Najvar ◽  
Satoru Matsumoto ◽  
Rosie A. Bocanegra ◽  
Monica L. Herrera ◽  
...  

ABSTRACTASP9726 is an investigational echinocandin within vitroactivity againstAspergillusspecies. We evaluated the pharmacokinetics and efficacy of this agent in an established guinea pig model of invasive pulmonary aspergillosis. ASP9726 plasma concentrations were measured in guinea pigs administered either a single dose or multiple doses of this agent at 2.5, 5, and 10 mg/kg of body weight/day by subcutaneous injection. Immunosuppressed guinea pigs were inoculated withA. fumigatusAF293, and ASP9726 (2.5, 5, and 10 mg/kg/day), voriconazole (10 mg/kg by oral gavage twice daily), or caspofungin (3 mg/kg/day by intraperitoneal injection) was administered for 8 days. Changes in fungal burden were measured by enumerating CFU and by quantitative PCR of specimens from within the lungs, as well as by analysis of serum (1→3)-β-d-glucan and galactomannan. Lung histopathology was also evaluated. ASP9726 plasma concentrations increased in a dose-proportional manner, and the drug was well tolerated at each dose. Each dose of ASP9726, voriconazole, and caspofungin significantly reduced pulmonary fungal burden as measured by quantitative PCR and by determining (1→3)-β-d-glucan and galactomannan levels, but only voriconazole significantly reduced numbers of CFU. ASP9726 at 5 mg/kg also significantly improved survival. Histopathology demonstrated morphological changes in hyphae in animals exposed to ASP9726 and caspofungin, consistent with the activities of the echinocandins. These results suggest that ASP9726 may be efficacious for the treatment of invasive pulmonary aspergillosis.


Sign in / Sign up

Export Citation Format

Share Document