On a salt fingers model

2018 ◽  
Vol 176 ◽  
pp. 100-116 ◽  
Author(s):  
G.M. Coclite ◽  
F. Paparella ◽  
S.F. Pellegrino
Keyword(s):  
2021 ◽  
Author(s):  
Justin Michael Brown ◽  
Timour Radko
Keyword(s):  

2010 ◽  
Vol 40 (4) ◽  
pp. 685-712 ◽  
Author(s):  
William D. Smyth ◽  
Barry Ruddick

Abstract In this paper the authors investigate the action of ambient turbulence on thermohaline interleaving using both theory and numerical calculations in combination with observations from Meddy Sharon and the Faroe Front. The highly simplified models of ambient turbulence used previously are improved upon by allowing turbulent diffusivities of momentum, heat, and salt to depend on background gradients and to evolve as the instability grows. Previous studies have shown that ambient turbulence, at typical ocean levels, can quench the thermohaline interleaving instability on baroclinic fronts. These findings conflict with the observation that interleaving is common in baroclinic frontal zones despite ambient turbulence. Another challenge to the existing theory comes from numerical experiments showing that the Schmidt number for sheared salt fingers is much smaller than previously assumed. Use of the revised value in an interleaving calculation results in interleaving layers that are both weaker and thinner than those observed. This study aims to resolve those paradoxes. The authors show that, when turbulence has a Prandtl number greater than unity, turbulent momentum fluxes can compensate for the reduced Schmidt number of salt fingering. Thus, ambient turbulence determines the vertical scale of interleaving. In typical oceanic interleaving structures, the observed property gradients are insufficient to predict interleaving growth at an observable level, even when improved turbulence models are used. The deficiency is small, though: gradients sharper by a few tens of percent are sufficient to support instability. The authors suggest that this is due to the efficiency of interleaving in erasing those property gradients. A new class of mechanisms for interleaving, driven by flow-dependent fluctuations in turbulent diffusivities, is identified. The underlying mechanism is similar to the well-known Phillips layering instability; however, because of Coriolis effects, it has a well-defined vertical scale and also a tilt angle opposite to that of finger-driven interleaving.


2001 ◽  
Vol 59 (3) ◽  
pp. 355-390 ◽  
Author(s):  
Melvin E. Stern ◽  
Timour Radko ◽  
Julian Simeonov
Keyword(s):  

2009 ◽  
Vol 65 (3-4) ◽  
pp. 591-598
Author(s):  
Ray-Yeng Yang ◽  
Hwung-Hweng Hwung ◽  
Igor V. Shugan

2011 ◽  
Vol 41 (7) ◽  
pp. 1364-1384 ◽  
Author(s):  
W. D. Smyth ◽  
S. Kimura

Abstract Mixing due to sheared salt fingers is studied by means of direct numerical simulations (DNS) of a double-diffusively unstable shear layer. The focus is on the “moderate shear” case, where shear is strong enough to produce Kelvin–Helmholtz (KH) instability but not strong enough to produce the subharmonic pairing instability. This flow supports both KH and salt-sheet instabilities, and the objective is to see how the two mechanisms work together to flux heat, salt, and momentum across the layer. For observed values of the bulk Richardson number Ri and the density ratio Rρ, the linear growth rates of KH and salt-sheet instabilities are similar. These mechanisms, as well as their associated secondary instabilities, lead the flow to a fully turbulent state. Depending on the values of Ri and Rρ, the resulting turbulence may be driven mainly by shear or mainly by salt fingering. Turbulent mixing causes the profiles of temperature, salinity, and velocity to spread; however, in salt-sheet-dominated cases, the net density (or buoyancy) layer thins over time. This could be a factor in the maintenance of the staircase and is also an argument in favor of an eventual role for Holmboe instability. Fluxes are scaled using both laboratory scalings for a thin layer and an effective diffusivity. Fluxes are generally stronger in salt-sheet-dominated cases. Shear instability disrupts salt-sheet fluxes while adding little flux of its own. Shear therefore reduces mixing, despite providing an additional energy source. The dissipation ratio Γ is near 0.2 for shear-dominated cases but is much larger when salt sheets are dominant, supporting the use of Γ in the diagnosis of observed mixing phenomena. The profiler approximation Γz, however, appears to significantly overestimate the true dissipation ratio.


2008 ◽  
Vol 65 (3) ◽  
pp. 1095-1097 ◽  
Author(s):  
David M. Schultz ◽  
Adam J. Durant ◽  
Jerry M. Straka ◽  
Timothy J. Garrett

Abstract Doswell has proposed a mechanism for mammatus called double-diffusive convection, the mechanism responsible for salt fingers in the ocean. The physics of salt fingers and mammatus are different. Unlike the ocean where the diffusivity is related to molecular motions within solution, the hydrometeors in clouds are affected by inertial and gravitational forces. Doswell misinterprets the vertical temperature profiles through mammatus and fails to understand the role of settling in volcanic ash clouds. Furthermore, given that mixing is a much more effective means of transferring heat in the atmosphere and given idealized numerical model simulations of mammatus showing that the destabilizing effect of subcloud sublimation is an effective mechanism for mammatus, this reply argues that double-diffusive convection is unlikely to explain mammatus, either in cumulonimbus anvils or in volcanic ash clouds.


Sign in / Sign up

Export Citation Format

Share Document