scholarly journals Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation

Nano Energy ◽  
2016 ◽  
Vol 30 ◽  
pp. 407-416 ◽  
Author(s):  
Youngho Jin ◽  
Ning Xia ◽  
Rosario A. Gerhardt
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yuli Chen ◽  
Shengtao Wang ◽  
Fei Pan ◽  
Jianyu Zhang

The electrical percolation of polymer-matrix composites (PMCs) containing hybrid fillers of carbon nanotubes (CNTs) and carbon black (CB) is estimated by studying the connection possibility of the fillers using Monte Carlo simulation. The 3D simulation model of CB-CNT hybrid filler is established, in which CNTs are modeled by slender capped cylinders and CB groups are modeled by hypothetical spheres with interspaces because CB particles are always agglomerated. The observation on the effects of CB and CNT volume fractions and dimensions on the electrical percolation threshold of hybrid filled composites is then carried out. It is found that the composite electrical percolation threshold can be reduced by increasing CNT aspect ratio, as well as increasing the diameter ratio of CB groups to CNTs. And adding CB into CNT composites can decrease the CNT volume needed to convert the composite conductivity, especially when the CNT volume fraction is close to the threshold of PMCs with only CNT filler. Different from previous linear assumption, the nonlinear relation between CB and CNT volume fractions at composite percolation threshold is revealed, which is consistent with the synergistic effect observed in experiments. Based on the nonlinear relation, the estimating equation for the electrical percolation threshold of the PMCs containing CB-CNT hybrid fillers is established.


2016 ◽  
Vol 88 (1-4) ◽  
pp. 325-335 ◽  
Author(s):  
A. D. Omah ◽  
B. A. Okorie ◽  
E. C. Omah ◽  
I. C. Ezema ◽  
V. S. Aigbodion ◽  
...  

2007 ◽  
Vol 334-335 ◽  
pp. 1053-1056 ◽  
Author(s):  
Jie Zhang ◽  
Hui Qing Fan ◽  
Sha Ming Ke ◽  
Yun Ze Shi ◽  
Xian Hua Zeng ◽  
...  

The fabrication processing, dielectric properties and thermal properties of polymer-matrix composites containing AlN particles (10μm) for electronic substrates and microelectronic packaging applications were investigated. The epoxy resin (E-51) is used as the matrix, and the dispersion of the AlN in the composites is varied form 0 vol% to 40 vol%. The microstructures of the polymer-matrix composites are observed through scanning electron microscopy (SEM). With increasing the AlN content, thermal conducting of composites is improved, while the composites still keep the relatively low dielectric constant and dielectric loss. According to the dielectric properties dependence on frequencies (1kHz-10MHz) of the composites, the Cole-Cole plot is analyzed. The dipole relaxation in the composite is induced, and it is suggested that the air layer exit between the epoxy resin and the AlN particles.


Sign in / Sign up

Export Citation Format

Share Document