scholarly journals Mesoporous LaMnO3+δ perovskite from spray−pyrolysis with superior performance for oxygen reduction reaction and Zn−air battery

Nano Energy ◽  
2018 ◽  
Vol 43 ◽  
pp. 81-90 ◽  
Author(s):  
Long Kuai ◽  
Erjie Kan ◽  
Wei Cao ◽  
Marko Huttula ◽  
Sami Ollikkala ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 925
Author(s):  
Loukas Belles ◽  
Constantinos Moularas ◽  
Szymon Smykała ◽  
Yiannis Deligiannakis

The oxygen reduction reaction (ORR) is the rate-limiting reaction in the cathode side of fuel cells. In the quest for alternatives to Pt-electrodes as cathodes in ORR, appropriate transition metal oxide-based electrocatalysts are needed. In the present work, we have synthesized Co3O4 and CoO/Co3O4 nanostructures using flame spray pyrolysis (FSP), as electrocatalysts for ORR in acidic and alkaline media. A detailed study of the effect of (Co-oxide)/Pt ratio on ORR efficiency shows that the present FSP-made Co-oxides are able to perform ORR at very low-Pt loading, 0.4% of total metal content. In acid medium, an electrode with (5.2% Pt + 4.8% Co3O4), achieved the highest ORR performance (Jmax = 8.31 mA/cm2, E1/2 = 0.66 V). In alkaline medium, superior performance and stability have been achieved by an electrode with (0.4%Pt + 9.6% (CoO/Co3O4)) with ORR activity (Jmax = 3.5 mA/cm2, E1/2 = 0.08 V). Using XRD, XPS, Raman and TEM data, we discuss the structural and electronic aspects of the FSP-made Co-oxide catalysts in relation to the ORR performance. Cyclic voltammetry data indicate that the ORR process involves active sites associated with Co3+ cations at the cobalt oxide surface. Technology-wise, the present work demonstrates that the developed FSP-protocols, constitutes a novel scalable process for production of co-oxides appropriate for oxygen reduction reaction electrodes.


Author(s):  
Jinjin Shi ◽  
Xinxin Shu ◽  
Chensheng Xiang ◽  
Hong Li ◽  
Yang Li ◽  
...  

The Fe–N4–O–Fe–N4 moiety as active sites in ultra-small Fe particles anchored on carbon aerogel exhibited superior performance towards the oxygen reduction reaction.


Author(s):  
Xin Yu Gao ◽  
Xingwei Sun ◽  
Jia Hui Guo ◽  
Ya Nan Teng ◽  
Lei Liu ◽  
...  

The exploration of bifunctional oxygen electrode towards oxygen evolution reaction (OER) activity and oxygen reduction reaction (ORR) is the bottlenecks for the development of rechargeable zinc-air battery as a clean...


Author(s):  
Yuyang Wang ◽  
Mingfu Yu ◽  
Tianyu Zhang ◽  
Zhichao Xue ◽  
Ying Ma ◽  
...  

The carbon nanotube (CNT) as the cathode material for hybrid Li-air batteries(HLABs), its catalytic ability of oxygen reduction reaction (ORR), and oxygen evolution reaction (OER) are relatively limited. Herein, to...


2022 ◽  
Vol 301 ◽  
pp. 120785
Author(s):  
Xiaoliang Zhao ◽  
Xuezheng Yu ◽  
Shishan Xin ◽  
Shuai Chen ◽  
Chaosheng Bao ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 742 ◽  
Author(s):  
Seonghee Kim ◽  
Shuhei Kato ◽  
Takahiro Ishizaki ◽  
Oi Lun Li ◽  
Jun Kang

Metal-air batteries are attracting increasing attention as a superior renewable energy conversion device due to their high performance and strong potential. However, the high cost and low stability of the current Pt catalyst is the main obstacle preventing wide industrial application. In this work, we applied a plasma process to fabricate aniline and a transition metals electrode (Fe, Co, Ni) as the carbon-nitrogen and the metal nanoparticle (NP) precursors, respectively, for selective metal/amino-N-doped carbon catalysts. All three as-synthesized catalysts exhibited dominant amino-N as the major C–N bonding state. In electrochemical testing, Co/amino-N-doped carbon showed positive E1/2 potential (0.83 V vs. Reversible Hydrogen Electrode (RHE)). In addition, the calculated electron transfer number (n) of Co/amino-N-doped carbon at 0.5 V vs. RHE was 3.81, which was only slightly less than that of commercial Pt/C (3.97). This superior performance of transition metal/amino-N-doped carbon promotes it as an economical oxygen reduction reaction (ORR) electrocatalyst to replace expensive Pt/C in metal-air batteries.


Sign in / Sign up

Export Citation Format

Share Document