A liquid metal-based triboelectric nanogenerator as stretchable electronics for safeguarding and self-powered mechanosensing

Nano Energy ◽  
2018 ◽  
Vol 53 ◽  
pp. 863-870 ◽  
Author(s):  
Sheng Wang ◽  
Li Ding ◽  
Xiwen Fan ◽  
Wanquan Jiang ◽  
Xinglong Gong
2016 ◽  
Vol 2 (6) ◽  
pp. e1501624 ◽  
Author(s):  
Fang Yi ◽  
Xiaofeng Wang ◽  
Simiao Niu ◽  
Shengming Li ◽  
Yajiang Yin ◽  
...  

The rapid growth of deformable and stretchable electronics calls for a deformable and stretchable power source. We report a scalable approach for energy harvesters and self-powered sensors that can be highly deformable and stretchable. With conductive liquid contained in a polymer cover, a shape-adaptive triboelectric nanogenerator (saTENG) unit can effectively harvest energy in various working modes. The saTENG can maintain its performance under a strain of as large as 300%. The saTENG is so flexible that it can be conformed to any three-dimensional and curvilinear surface. We demonstrate applications of the saTENG as a wearable power source and self-powered sensor to monitor biomechanical motion. A bracelet-like saTENG worn on the wrist can light up more than 80 light-emitting diodes. Owing to the highly scalable manufacturing process, the saTENG can be easily applied for large-area energy harvesting. In addition, the saTENG can be extended to extract energy from mechanical motion using flowing water as the electrode. This approach provides a new prospect for deformable and stretchable power sources, as well as self-powered sensors, and has potential applications in various areas such as robotics, biomechanics, physiology, kinesiology, and entertainment.


ACS Nano ◽  
2017 ◽  
Vol 11 (7) ◽  
pp. 7440-7446 ◽  
Author(s):  
Binbin Zhang ◽  
Lei Zhang ◽  
Weili Deng ◽  
Long Jin ◽  
Fengjun Chun ◽  
...  

Author(s):  
Pengcheng Wu ◽  
Lu-yu Zhou ◽  
Shang Lv ◽  
JianZhong Fu ◽  
Yong He

Liquid-metal (LM)-based flexible and stretchable electronics have attracted widespread interest in soft robotics, self-powered devices and electronic skins. Although nanometerization can facilitate deposition and patterning of LMs onto substrates, subsequent...


Nano Energy ◽  
2021 ◽  
Vol 84 ◽  
pp. 105887
Author(s):  
Yuankai Zhou ◽  
Maoliang Shen ◽  
Xin Cui ◽  
Yicheng Shao ◽  
Lijie Li ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengxiao Chen ◽  
Zhe Wang ◽  
Qichong Zhang ◽  
Zhixun Wang ◽  
Wei Liu ◽  
...  

AbstractThe well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.


Sign in / Sign up

Export Citation Format

Share Document