Low-entropy structured wearable film sensor with piezoresistive-piezoelectric hybrid effect for 3D mechanical signal screening

Nano Energy ◽  
2021 ◽  
Vol 90 ◽  
pp. 106603
Author(s):  
Chun-Yan Tang ◽  
Xing Zhao ◽  
Jin Jia ◽  
Shan Wang ◽  
Xiang-Jun Zha ◽  
...  
Author(s):  
S.D. Smith ◽  
R.J. Spontak ◽  
D.H. Melik ◽  
S.M. Buehler ◽  
K.M. Kerr ◽  
...  

When blended together, homopolymers A and B will normally macrophase-separate into relatively large (≫1 μm) A-rich and B-rich phases, between which exists poor interfacial adhesion, due to a low entropy of mixing. The size scale of phase separation in such a blend can be reduced, and the extent of interfacial A-B contact and entanglement enhanced, via addition of an emulsifying agent such as an AB diblock copolymer. Diblock copolymers consist of a long sequence of A monomers covalently bonded to a long sequence of B monomers. These materials are surface-active and decrease interfacial tension between immiscible phases much in the same way as do small-molecule surfactants. Previous studies have clearly demonstrated the utility of block copolymers in compatibilizing homopolymer blends and enhancing blend properties such as fracture toughness. It is now recognized that optimization of emulsified ternary blends relies upon design considerations such as sufficient block penetration into a macrophase (to avoid block slip) and prevention of a copolymer multilayer at the A-B interface (to avoid intralayer failure).


Author(s):  
Aleksandr S. MYAKOCHIN ◽  
Petr V. NIKITIN ◽  
Sergey Yu. POBEREZHSKIY ◽  
Anna A. SHKURATENKO

The paper presents a method, tools and a newly developed algorithm for experimentally determining heat transfer coefficients in organic liquids and solutions. This work is made relevant by the problem of development of a new generation of aerospace technology. In this connection, improvements have been made to the pulse method of determining heat transfer coefficients that is based on the use of a micron-thick film sensor. The measurement setup was modified. A math model was constructed for the measuring sensor. Algorithms were developed for conducting the experiment and processing measurement results to determine heat transfer coefficients. Experimental uncertainties were analyzed. The paper provides results of experimental studies on certain organic liquids. The authors believe that the material presented in the paper will find application in research conducted at research institutions, engineering offices and universities, among researches, postgraduates and students. Key words: thermal and physical characteristics, organic liquids and their solutions, film-type electrical resistor, thin-film temperature sensor, voltage pulse, resistance thermometer, irregular heat transfer regime.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 593
Author(s):  
Ryota Yanagisawa ◽  
Shunsuke Shigaki ◽  
Kotaro Yasui ◽  
Dai Owaki ◽  
Yasuhiro Sugimoto ◽  
...  

In this study, we fabricated a novel wearable vibration sensor for insects and measured their wing flapping. An analysis of insect wing deformation in relation to changes in the environment plays an important role in understanding the underlying mechanism enabling insects to dynamically interact with their surrounding environment. It is common to use a high-speed camera to measure the wing flapping; however, it is difficult to analyze the feedback mechanism caused by the environmental changes caused by the flapping because this method applies an indirect measurement. Therefore, we propose the fabrication of a novel film sensor that is capable of measuring the changes in the wingbeat frequency of an insect. This novel sensor is composed of flat silver particles admixed with a silicone polymer, which changes the value of the resistor when a bending deformation occurs. As a result of attaching this sensor to the wings of a moth and a dragonfly and measuring the flapping of the wings, we were able to measure the frequency of the flapping with high accuracy. In addition, as a result of simultaneously measuring the relationship between the behavior of a moth during its search for an odor source and its wing flapping, it became clear that the frequency of the flapping changed depending on the frequency of the odor reception. From this result, a wearable film sensor for an insect that can measure the displacement of the body during a particular behavior was fabricated.


2020 ◽  
pp. 1-1
Author(s):  
Lei He ◽  
Jiajie Li ◽  
Xiaoqiang Yu ◽  
Sajjad Ur Rehman ◽  
Pengpeng Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document