Enhanced Thermoelectric Performance of PbSe-graphene Nanocomposite Manufactured With Acoustic Cavitation Induced Defects

Nano Energy ◽  
2022 ◽  
pp. 106943
Author(s):  
Chhatrasal Gayner ◽  
Raghunandan Sharma ◽  
Iram Malik ◽  
Mukesh Kumar ◽  
Sugandha Singh ◽  
...  
Author(s):  
L. Mulestagno ◽  
J.C. Holzer ◽  
P. Fraundorf

Due to the wealth of information, both analytical and structural that can be obtained from it TEM always has been a favorite tool for the analysis of process-induced defects in semiconductor wafers. The only major disadvantage has always been, that the volume under study in the TEM is relatively small, making it difficult to locate low density defects, and sample preparation is a somewhat lengthy procedure. This problem has been somewhat alleviated by the availability of efficient low angle milling.Using a PIPS® variable angle ion -mill, manufactured by Gatan, we have been consistently obtaining planar specimens with a high quality thin area in excess of 5 × 104 μm2 in about half an hour (milling time), which has made it possible to locate defects at lower densities, or, for defects of relatively high density, obtain information which is statistically more significant (table 1).


Author(s):  
H. Watanabe ◽  
B. Kabius ◽  
B. Roas ◽  
K. Urban

Recently it was reported that the critical current density(Jc) of YBa2Cu2O7, in the presence of magnetic field, is enhanced by ion irradiation. The enhancement is thought to be due to the pinning of the magnetic flux lines by radiation-induced defects or by structural disorder. The aim of the present study was to understand the fundamental mechanisms of the defect formation in association with the pinning effect in YBa2Cu3O7 by means of high-resolution electron microscopy(HRTEM).The YBa2Cu3O7 specimens were prepared by laser ablation in an insitu process. During deposition, a substrate temperature and oxygen atmosphere were kept at about 1073 K and 0.4 mbar, respectively. In this way high quality epitaxially films can be obtained with the caxis parallel to the <100 > SrTiO3 substrate normal. The specimens were irradiated at a temperature of 77 K with 173 MeV Xe ions up to a dose of 3.0 × 1016 m−2.


Author(s):  
Siqi Wang ◽  
Yu Xiao ◽  
Yongjin Chen ◽  
Shang Peng ◽  
Dongyang Wang ◽  
...  

Hierarchical microstructures lead to high thermoelectric performance in Cum+nPb100SbmTe100Se2m (CLAST) through synergistically optimizing carrier and phonon transport.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-1045-C8-1048
Author(s):  
T. BOLZE ◽  
J. PEISL

1990 ◽  
Vol 64 (03) ◽  
pp. 478-484 ◽  
Author(s):  
Thomas Exner ◽  
Douglas A Triplett ◽  
David A Taberner ◽  
Margaret A Howard ◽  
E Nigel Harris

SummarySix lyophilized plasma samples were sent to 20 “expert” laboratories for assessment of lupus anticoagulant (LA). Four samples contained pooled LA of graded potency mixed with aged normal plasma. One contained LA plus cephalin phospholipid and one contained a nonspecific venom anticoagulant. Sixteen methods were used overall with some participants using up to 8 methods. Results were scored in regard to the known potencies of LA in the samples and other known induced defects.Activated partial thromboplastin time (APTT) tests used by most participants for preliminary screening were relatively sensitive, but non-specific. Platelet or phospholipid neutralization procedures (PNP) appeared to be sensitive and specific but showed a non-linear response to increased LA content. Kaolin clotting time (KCT) tests showed the most sensitive response to increased LA content but the weaker LA were not scored as abnormal by most laboratories as the samples may have contained platelet fragments. Other commonly used tests such as the tissue thromboplastin inhibition (TTI) test and the dilute Russell’s viper venom test (DRVVT) were carried out somewhat inconsistently. The variability in performance of tests in different laboratories indicates that standardization of methodology is urgently required.Generally it seemed that most clotting tests were “bypassed” by the addition of phospholipid to a known LA-positive sample in apparently direct proportion to their sensitivity. Sample preparation, especially prevention of contamination with activated platelets is a vital preliminary part in the assay of LA.


2002 ◽  
Vol 716 ◽  
Author(s):  
Yi-Mu Lee ◽  
Yider Wu ◽  
Joon Goo Hong ◽  
Gerald Lucovsky

AbstractConstant current stress (CCS) has been used to investigate the Stress-Induced Leakage Current (SILC) to clarify the influence of boron penetration and nitrogen incorporation on the breakdown of p-channel devices with sub-2.0 nm Oxide/Nitride (O/N) and oxynitride dielectrics prepared by remote plasma enhanced CVD (RPECVD). Degradation of MOSFET characteristics correlated with soft breakdown (SBD) and hard breakdown (HBD), and attributed to the increased gate leakage current are studied. Gate voltages were gradually decreased during SBD, and a continuous increase in SILC at low gate voltages between each stress interval, is shown to be due to the generation of positive traps which are enhanced by boron penetration. Compared to thermal oxides, stacked O/N and oxynitride dielectrics with interface nitridation show reduced SILC due to the suppression of boron penetration and associated positive trap generation. Devices stressed under substrate injection show harder breakdown and more severe degradation, implying a greater amount of the stress-induced defects at SiO2/substrate interface. Stacked O/N and oxynitride devices also show less degradation in electrical performance compared to thermal oxide devices due to an improved Si/SiO2 interface, and reduced gate-to-drain overlap region.


Sign in / Sign up

Export Citation Format

Share Document