Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle

2008 ◽  
Vol 32 (2) ◽  
pp. 243-253 ◽  
Author(s):  
Annamaria De Luca ◽  
Beatrice Nico ◽  
Jean-François Rolland ◽  
Anna Cozzoli ◽  
Rosa Burdi ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Fabrizio Rinaldi ◽  
Yu Zhang ◽  
Ricardo Mondragon-Gonzalez ◽  
Jeffrey Harvey ◽  
Rita C. R. Perlingeiro

2012 ◽  
Vol 113 (5) ◽  
pp. 808-816 ◽  
Author(s):  
Su Xu ◽  
Stephen J. P. Pratt ◽  
Espen E. Spangenburg ◽  
Richard M. Lovering

Skeletal muscle injury is often assessed by clinical findings (history, pain, tenderness, strength loss), by imaging, or by invasive techniques. The purpose of this work was to determine if in vivo proton magnetic resonance spectroscopy (1H MRS) could reveal metabolic changes in murine skeletal muscle after contraction-induced injury. We compared findings in the tibialis anterior muscle from both healthy wild-type (WT) muscles (C57BL/10 mice) and dystrophic ( mdx mice) muscles (an animal model for human Duchenne muscular dystrophy) before and after contraction-induced injury. A mild in vivo eccentric injury protocol was used due to the high susceptibility of mdx muscles to injury. As expected, mdx mice sustained a greater loss of force (81%) after injury compared with WT (42%). In the uninjured muscles, choline (Cho) levels were 47% lower in the mdx muscles compared with WT muscles. In mdx mice, taurine levels decreased 17%, and Cho levels increased 25% in injured muscles compared with uninjured mdx muscles. Intramyocellular lipids and total muscle lipid levels increased significantly after injury but only in WT. The increase in lipid was confirmed using a permeable lipophilic fluorescence dye. In summary, loss of torque after injury was associated with alterations in muscle metabolite levels that may contribute to the overall injury response in mdx mice. These results show that it is possible to obtain meaningful in vivo 1H MRS regarding skeletal muscle injury.


2008 ◽  
Vol 294 (1) ◽  
pp. C161-C168 ◽  
Author(s):  
Jonathan D. Schertzer ◽  
Chris van der Poel ◽  
Thea Shavlakadze ◽  
Miranda D. Grounds ◽  
Gordon S. Lynch

Duchenne muscular dystrophy (DMD) is a lethal X-linked disease caused by the absence of functional dystrophin. Abnormal excitation-contraction (E-C) coupling has been reported in dystrophic muscle fibers from mdx mice, and alterations in E-C coupling components may occur as a direct result of dystrophin deficiency. We hypothesized that muscle-specific overexpression of insulin-growth factor-1 (IGF-I) would reduce E-C coupling failure in mdx muscle. Mechanically skinned extensor digitorum longus muscle fibers from mdx mice displayed a faster decline in depolarization-induced force responses (DIFR); however, there were no differences in sarcoplasmic reticulum (SR)-mediated Ca2+ resequestration or in the properties of the contractile apparatus when compared with nondystrophic controls. The rate of DIFR decline was restored to control levels in fibers from transgenic mdx mice that overexpressed IGF-I in skeletal muscle ( mdx/IGF-I mice). Dystrophic muscles have a lower transcript level of a specific dihydropyridine receptor (DHPR) isoform, and IGF-I-mediated changes in E-C coupling were associated with increased transcript levels of specific DHPR isoforms involved in Ca2+ regulation. Importantly, IGF-I overexpression also increased the sensitivity of the contractile apparatus to Ca2+. The results demonstrate that IGF-I can ameliorate fundamental aspects of E-C coupling failure in dystrophic muscle fibers and that these effects are important for the improvements in cellular function induced by this growth factor.


2016 ◽  
Vol 120 (4) ◽  
pp. 377-390 ◽  
Author(s):  
Chengcao Sun ◽  
Shujun Li ◽  
Dejia Li

Sulforaphane (SFN), an activator of NF-E2-related factor 2 (Nrf2), has been found to have an antifibrotic effect on liver and lung. However, its effects on dystrophic muscle fibrosis remain unknown. This work was undertaken to evaluate the effects of SFN-mediated activation of Nrf2 on dystrophic muscle fibrosis. Male mdx mice (age 3 mo) were treated with SFN by gavage (2 mg/kg body wt per day) for 3 mo. Experimental results demonstrated that SFN remarkably attenuated skeletal and cardiac muscle fibrosis as indicated by reduced Sirius Red staining and immunostaining of the extracellular matrix. Moreover, SFN significantly inhibited the transforming growth factor-β (TGF-β)/Smad signaling pathway and suppressed profibrogenic gene and protein expressions such as those of α-smooth muscle actin (α-SMA), fibronectin, collagen I, plasminogen activator inhibitor-1 (PAI-1), and tissue inhibitor metalloproteinase-1 (TIMP-1) in an Nrf2-dependent manner. Furthermore, SFN significantly decreased the expression of inflammatory cytokines CD45, TNF-α, and IL-6 in mdx mice. In conclusion, these results show that SFN can attenuate dystrophic muscle fibrosis by Nrf2-mediated inhibition of the TGF-β/Smad signaling pathway, which indicates that Nrf2 may represent a new target for dystrophic muscle fibrosis.


2006 ◽  
Vol 13 ◽  
pp. S16
Author(s):  
Bing Wang ◽  
Juan Li ◽  
Chunlian Chen ◽  
Xiancheng Jiang ◽  
Terry O'Day ◽  
...  

1999 ◽  
Vol 144 (6) ◽  
pp. 1259-1270 ◽  
Author(s):  
McRae W. Williams ◽  
Robert J. Bloch

We used immunofluorescence techniques and confocal imaging to study the organization of the membrane skeleton of skeletal muscle fibers of mdx mice, which lack dystrophin. β-Spectrin is normally found at the sarcolemma in costameres, a rectilinear array of longitudinal strands and elements overlying Z and M lines. However, in the skeletal muscle of mdx mice, β-spectrin tends to be absent from the sarcolemma over M lines and the longitudinal strands may be disrupted or missing. Other proteins of the membrane and associated cytoskeleton, including syntrophin, β-dystroglycan, vinculin, and Na,K-ATPase are also concentrated in costameres, in control myofibers, and mdx muscle. They also distribute into the same altered sarcolemmal arrays that contain β-spectrin. Utrophin, which is expressed in mdx muscle, also codistributes with β-spectrin at the mutant sarcolemma. By contrast, the distribution of structural and intracellular membrane proteins, including α-actinin, the Ca-ATPase and dihydropyridine receptors, is not affected, even at sites close to the sarcolemma. Our results suggest that in myofibers of the mdx mouse, the membrane- associated cytoskeleton, but not the nearby myoplasm, undergoes widespread coordinated changes in organization. These changes may contribute to the fragility of the sarcolemma of dystrophic muscle.


2021 ◽  
Vol 7 (26) ◽  
pp. eabh3693
Author(s):  
Theresa M. Raimondo ◽  
David J. Mooney

Chronic inflammation contributes to the pathogenesis of all muscular dystrophies. Inflammatory T cells damage muscle, while regulatory T cells (Tregs) promote regeneration. We hypothesized that providing anti-inflammatory cytokines in dystrophic muscle would promote proregenerative immune phenotypes and improve function. Primary T cells from dystrophic (mdx) mice responded appropriately to inflammatory or suppressive cytokines. Subsequently, interleukin-4 (IL-4)– or IL-10–conjugated gold nanoparticles (PA4, PA10) were injected into chronically injured, aged, mdx muscle. PA4 and PA10 increased T cell recruitment, with PA4 doubling CD4+/CD8− T cells versus controls. Further, 50% of CD4+/CD8− T cells were immunosuppressive Tregs following PA4, versus 20% in controls. Concomitant with Treg recruitment, muscles exhibited increased fiber area and fourfold increases in contraction force and velocity versus controls. The ability of PA4 to shift immune responses, and improve dystrophic muscle function, suggests that immunomodulatory treatment may benefit many genetically diverse muscular dystrophies, all of which share inflammatory pathology.


Author(s):  
Laura V. Young ◽  
William Morrison ◽  
Craig Campbell ◽  
Emma C. Moore ◽  
Michel G. Arsenault ◽  
...  

Cellular senescence is the irreversible arrest of normally dividing cells and is driven by cell cycle inhibitory proteins such as p16, p21 and p53. When cells enter senescence, they secrete a host of proinflammatory factors known as the senescence associated secretory phenotype which has deleterious effects on surrounding cells and tissues. Little is known of the role of senescence in Duchenne Muscular Dystrophy (DMD), the fatal X-linked neuromuscular disorder typified by chronic inflammation, extracellular matrix remodeling and a progressive loss in muscle mass and function. Here, we demonstrate using C57-mdx (8-week-old) and D2-mdx mice (4-week and 8-week-old), two mouse models of DMD, that cells displaying canonical markers of senescence are found within skeletal muscle. 8-week-old D2-mdx mice, which display severe muscle pathology, had greater numbers of senescent cells associated with areas of inflammation which were mostly Cdkn1a-positive macrophages while in C57-mdx muscle, senescent populations were endothelial cells and macrophages localized to newly regenerated myofibers. Interestingly, this pattern was similar to cardiotoxin (CTX)-injured wildtype (WT) muscle which experienced a transient senescent response. Dystrophic muscle demonstrated significant upregulations in senescence pathway genes (Cdkn1a (p21), Cdkn2a (p16INK4A), Trp53 (p53)) which correlated with the quantity of SA-b-Gal-positive cells. These results highlight an underexplored role for cellular senescence in murine dystrophic muscle.


2006 ◽  
Vol 16 (9-10) ◽  
pp. 591-602 ◽  
Author(s):  
Stuart Hodgetts ◽  
Hannah Radley ◽  
Marilyn Davies ◽  
Miranda D. Grounds
Keyword(s):  
Mdx Mice ◽  

Sign in / Sign up

Export Citation Format

Share Document