scholarly journals Disturbances of brain cholesterol metabolism: A new excitotoxic process associated with status epilepticus

2021 ◽  
pp. 105346
Author(s):  
Aurélie Hanin ◽  
Paul Baudin ◽  
Sophie Demeret ◽  
Delphine Roussel ◽  
Sarah Lecas ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vijay R. Varma ◽  
H. Büşra Lüleci ◽  
Anup M. Oommen ◽  
Sudhir Varma ◽  
Chad T. Blackshear ◽  
...  

AbstractThe role of brain cholesterol metabolism in Alzheimer’s disease (AD) remains unclear. Peripheral and brain cholesterol levels are largely independent due to the impermeability of the blood brain barrier (BBB), highlighting the importance of studying the role of brain cholesterol homeostasis in AD. We first tested whether metabolite markers of brain cholesterol biosynthesis and catabolism were altered in AD and associated with AD pathology using linear mixed-effects models in two brain autopsy samples from the Baltimore Longitudinal Study of Aging (BLSA) and the Religious Orders Study (ROS). We next tested whether genetic regulators of brain cholesterol biosynthesis and catabolism were altered in AD using the ANOVA test in publicly available brain tissue transcriptomic datasets. Finally, using regional brain transcriptomic data, we performed genome-scale metabolic network modeling to assess alterations in cholesterol biosynthesis and catabolism reactions in AD. We show that AD is associated with pervasive abnormalities in cholesterol biosynthesis and catabolism. Using transcriptomic data from Parkinson’s disease (PD) brain tissue samples, we found that gene expression alterations identified in AD were not observed in PD, suggesting that these changes may be specific to AD. Our results suggest that reduced de novo cholesterol biosynthesis may occur in response to impaired enzymatic cholesterol catabolism and efflux to maintain brain cholesterol levels in AD. This is accompanied by the accumulation of nonenzymatically generated cytotoxic oxysterols. Our results set the stage for experimental studies to address whether abnormalities in cholesterol metabolism are plausible therapeutic targets in AD.


2010 ◽  
Vol 19 (1) ◽  
pp. 117-127 ◽  
Author(s):  
Tim Vanmierlo ◽  
Vincent W. Bloks ◽  
Leonie C. van Vark-van der Zee ◽  
Kris Rutten ◽  
Anja Kerksiek ◽  
...  

Cholesterol ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Matthias Orth ◽  
Stefano Bellosta

Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer’s disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.


2009 ◽  
Vol 24 (3) ◽  
pp. 183-190 ◽  
Author(s):  
Heike Kölsch ◽  
Dieter Lütjohann ◽  
Frank Jessen ◽  
Julius Popp ◽  
Frank Hentschel ◽  
...  

AbstractBackgroundCholesterol 24S-hydroxylase (CYP46) catalyzes the conversion of cholesterol to 24S-hydroxycholesterol, the primary cerebral cholesterol elimination product. Only few gene variations in CYP46 gene (CYP46A1) have been investigated for their relevance as genetic risk factors of Alzheimer’s disease (AD) and results are contradictory.MethodsWe performed a gene variability screening in CYP46A1 and investigated the effect of gene variants on the risk of AD and on CSF levels of cholesterol and 24S-hydroxycholesterol.ResultsTwo of the identified 16 SNPs in CYP46A1 influenced AD risk in our study (rs7157609: p = 0.016; rs4900442: p = 0.019). The interaction term of both SNPs was also associated with an increased risk of AD (p = 0.006). Haplotypes including both SNPs were calculated and haplotype G–C was identified to influence the risk of AD (p = 0.005). AD patients and non-demented controls, who were carriers of the G–C haplotype, presented with reduced CSF levels of 24S-hydroxycholesterol (p = 0.001) and cholesterol (p < 0.001).ConclusionOur results suggest that CYP46A1 gene variations might act as risk factor for AD via an influence on brain cholesterol metabolism.


2005 ◽  
Vol 72 ◽  
pp. 129-138 ◽  
Author(s):  
Maria Dolores Ledesma ◽  
Carlos G. Dotti

Retrospective clinical studies indicate that individuals chronically treated with cholesterol synthesis inhibitors, statins, are at lower risk of developing AD (Alzheimer's disease). Moreover, treatment of guinea pigs with high doses of simvastatin or drastic reduction of cholesterol in cultured cells decrease Aβ (β-amyloid peptide) production. These data sustain the concept that high brain cholesterol is responsible for Aβ accumulation in AD, providing the scientific support for the proposed use of statins to prevent this disease. However, a number of unresolved issues raise doubts that high brain cholesterol is to blame. First, it has not been shown that higher neuronal cholesterol increases Abeta production. Secondly, it has not been demonstrated that neurons in AD have more cholesterol than control neurons. On the contrary, the brains of AD patients show a specific down-regulation of seladin-1, a protein involved in cholesterol synthesis, and low membrane cholesterol was observed in hippocampal membranes of ApoE4 (apolipoprotein E4) AD cases. This effect was also evidenced by altered cholesterol-rich membrane domains (rafts) and raft-mediated functions, such as diminished generation of the Aβ-degrading enzyme plasmin. Thirdly, numerous genetic defects that cause neurodegeneration are due to defective cholesterol metabolism. Fourthly, in female mice, the most brain-permeant statin induces neurodegeneration and high amyloid production. Altogether, this evidence makes it difficult to accept that statins are beneficial through acting as brain cholesterol-synthesis inhibitors. It appears more likely that their advantageous role arises from improved brain oxygenation.


2019 ◽  
Vol 34 (3) ◽  
pp. 386-395 ◽  
Author(s):  
Xuemei Huang ◽  
Nicholas W. Sterling ◽  
Guangwei Du ◽  
Dongxiao Sun ◽  
Christina Stetter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document