scholarly journals Cholesterol: Its Regulation and Role in Central Nervous System Disorders

Cholesterol ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Matthias Orth ◽  
Stefano Bellosta

Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer’s disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jenna Bloemer ◽  
Priyanka D. Pinky ◽  
Manoj Govindarajulu ◽  
Hao Hong ◽  
Robert Judd ◽  
...  

Adiponectin, the most abundant plasma adipokine, plays an important role in the regulation of glucose and lipid metabolism. Adiponectin also possesses insulin-sensitizing, anti-inflammatory, angiogenic, and vasodilatory properties which may influence central nervous system (CNS) disorders. Although initially not thought to cross the blood-brain barrier, adiponectin enters the brain through peripheral circulation. In the brain, adiponectin signaling through its receptors, AdipoR1 and AdipoR2, directly influences important brain functions such as energy homeostasis, hippocampal neurogenesis, and synaptic plasticity. Overall, based on its central and peripheral actions, recent evidence indicates that adiponectin has neuroprotective, antiatherogenic, and antidepressant effects. However, these findings are not without controversy as human observational studies report differing correlations between plasma adiponectin levels and incidence of CNS disorders. Despite these controversies, adiponectin is gaining attention as a potential therapeutic target for diverse CNS disorders, such as stroke, Alzheimer’s disease, anxiety, and depression. Evidence regarding the emerging role for adiponectin in these disorders is discussed in the current review.


2017 ◽  
Vol 28 (2) ◽  
pp. 113-132 ◽  
Author(s):  
Diego Guidolin ◽  
Manuela Marcoli ◽  
Guido Maura ◽  
Luigi F. Agnati

AbstractCellular network architecture plays a crucial role as the structural substrate for the brain functions. Therefore, it represents the main rationale for the emerging field of connectomics, defined as the comprehensive study of all aspects of central nervous system connectivity. Accordingly, in the present paper the main emphasis will be on the communication processes in the brain, namely wiring transmission (WT), i.e. the mapping of the communication channels made by cell components such as axons and synapses, and volume transmission (VT), i.e. the chemical signal diffusion along the interstitial brain fluid pathways. Considering both processes can further expand the connectomics concept, since both WT-connectomics and VT-connectomics contribute to the structure of the brain connectome. A consensus exists that such a structure follows a hierarchical or nested architecture, and macro-, meso- and microscales have been defined. In this respect, however, several lines of evidence indicate that a nanoscale (nano-connectomics) should also be considered to capture direct protein-protein allosteric interactions such as those occurring, for example, in receptor-receptor interactions at the plasma membrane level. In addition, emerging evidence points to novel mechanisms likely playing a significant role in the modulation of intercellular connectivity, increasing the plasticity of the system and adding complexity to its structure. In particular, the roamer type of VT (i.e. the intercellular transfer of RNA, proteins and receptors by extracellular vesicles) will be discussed since it allowed us to introduce a new concept of ‘transient changes of cell phenotype’, that is the transient acquisition of new signal release capabilities and/or new recognition/decoding apparatuses.


2018 ◽  
Vol 34 (1) ◽  
pp. 523-544 ◽  
Author(s):  
Timothy R. Hammond ◽  
Daisy Robinton ◽  
Beth Stevens

An explosion of findings driven by powerful new technologies has expanded our understanding of microglia, the resident immune cells of the central nervous system (CNS). This wave of discoveries has fueled a growing interest in the roles that these cells play in the development of the CNS and in the neuropathology of a diverse array of disorders. In this review, we discuss the crucial roles that microglia play in shaping the brain—from their influence on neurons and glia within the developing CNS to their roles in synaptic maturation and brain wiring—as well as some of the obstacles to overcome when assessing their contributions to normal brain development. Furthermore, we examine how normal developmental functions of microglia are perturbed or remerge in neurodevelopmental and neurodegenerative disease.


2011 ◽  
Vol 91 (2) ◽  
pp. 461-553 ◽  
Author(s):  
Helmut Kettenmann ◽  
Uwe-Karsten Hanisch ◽  
Mami Noda ◽  
Alexei Verkhratsky

Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed “resting microglia.” Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the “activated microglial cell.” This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.


2016 ◽  
Vol 68 (5) ◽  
pp. 1105-1111
Author(s):  
A.C. Nepomuceno ◽  
R. Zanatta ◽  
D.G. Chung ◽  
P.F. Costa ◽  
M.A.R. Feliciano ◽  
...  

ABSTRACT Computed tomography of the brain is necessary as part of the diagnosis of lesions of the central nervous system. In this study we used six domestic cats, male or female, aged between one and five years, evaluated by Computed Tomography (CT) examination without clinical signs of central nervous system disorders. Two euthanized animals stating a condition unrelated to the nervous system were incorporated into this study. The proposal consisted in establishing detailed anatomical description of tomographic images of normal brain of cats, using as reference anatomical images of cross sections of the stained brain and cranial part, with thicknesses similar to the planes of the CT images. CT examinations were performed with and without intravenous iodinated contrast media for live animals. With one euthanized animal, the brain was removed and immediately preserved in 10% formalin for later achievement in cross-sectional thickness of approximately 4mm and staining technique of Barnard, and Robert Brown. The head of another animal was disarticulated in the Atlanto-occipital region and frozen at -20ºC then sliced to a thickness of about 5mm. The description of visualized anatomical structures using tomography is useful as a guide and allows transcribing with relative accuracy the brain region affected by an injury, and thus correlating it with the clinical symptoms of the patient, providing additional information and consequent improvement to veterinarians during the course of surgical clinic in this species.


Author(s):  
Alexandria N. Hughes

Building a functional nervous system requires the coordinated actions of many glial cells. In the vertebrate central nervous system (CNS), oligodendrocytes myelinate neuronal axons to increase conduction velocity and provide trophic support. Myelination can be modified by local signaling at the axon-myelin interface, potentially adapting sheaths to support the metabolic needs and physiology of individual neurons. However, neurons and oligodendrocytes are not wholly responsible for crafting the myelination patterns seen in vivo. Other cell types of the CNS, including microglia and astrocytes, modify myelination. In this review, I cover the contributions of non-neuronal, non-oligodendroglial cells to the formation, maintenance, and pruning of myelin sheaths. I address ways that these cell types interact with the oligodendrocyte lineage throughout development to modify myelination. Additionally, I discuss mechanisms by which these cells may indirectly tune myelination by regulating neuronal activity. Understanding how glial-glial interactions regulate myelination is essential for understanding how the brain functions as a whole and for developing strategies to repair myelin in disease.


Neurosurgery ◽  
2007 ◽  
Vol 60 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Bryan C. Oh ◽  
Paul G. Pagnini ◽  
Michael Y. Wang ◽  
Charles Y. Liu ◽  
Paul E. Kim ◽  
...  

Abstract RADIOSURGERY IS NOW the preferred treatment modality for many intracranial disease processes. Although almost 50 years have passed since it was introduced as a tool to treat neurological disease, investigations into its effects on normal tissues of the central nervous system are still ongoing. The need for these continuing studies must be underscored. A fundamental understanding of the brain parenchymal response to radiosurgery would permit development of strategies that would enhance and potentiate the radiosurgical treatment effects on diseased tissue while mitigating injury to normal structures. To date, most studies on the response of the central nervous system to radiosurgery have been performed on brain tissue in the absence of pathological lesions, such as benign tumors or metastases. Although instructive, these investigations fail to emulate the majority of clinical scenarios that involve radiosurgical treatment of specific lesions surrounded by normal brain parenchyma. This article is the first in a two-part series that addresses the brain parenchyma's response to radiosurgery. This first article analyzes the histological, radiographic, and molecular data gathered regarding the brain parenchymal response to radiosurgery and aims to suggest future studies that could enhance our understanding of the topic. The second article in the series begins by discussing strategies for radiosurgical therapeutic enhancement. It concludes by focusing on strategies for mitigation and repair of radiation-induced brain injury.


2021 ◽  
Vol 15 (7) ◽  
pp. 318-322
Author(s):  
Ian Peate

The largest and the most complex organ in the body is the brain. In this article, the healthcare assistant and assistant practitioner (HCA and AP) are introduced to the fundamental features that are associated with the anatomy of the brain. The body's central nervous system is made up of the brain, along with the spinal cord. This is the main control system for the body's functions and abilities, allowing conscious communication with the body and automatic operation of the vital organs, for example, the heart. In this article, specific functions of the brain are considered. The four lobes of the brain are reviewed and also the three coverings of the meninges. Having insight and understanding related to how the brain functions can help the HCA and AP offer people care that is founded on a sound knowledge base. A glossary of terms is provided and a short quiz has also been included.


Neuroforum ◽  
2019 ◽  
Vol 25 (3) ◽  
pp. 205-212 ◽  
Author(s):  
Charlotte Mezö ◽  
Omar Mossad ◽  
Daniel Erny ◽  
Thomas Blank

Summary Microbiome research has grown significantly in the last decade, highlighting manifold implications of the microbiota to the host’s health. The gut microbiota is connected to the brain through several avenues that allow their interaction. Thus, recent studies have attemtpted to characterize these connections and enhance our understanding of the so called ‘gut-brain-axis’. Microglia, the central nervous system resident macrophages, are crucial for the proper development and maintenance of brain functions. As immune cells, they are in the spotlight for relaying signals between the microbiota and cells of the brain. In this review, we contemplate on interactions between the gut microbiota and microglia, and their influence on brain functions in health and disease.


2004 ◽  
Vol 36 (7) ◽  
pp. 501-507
Author(s):  
Xi-Dao Wang ◽  
Ling-Wei Kong ◽  
Zhi-Qin Xie ◽  
Yu-Qiu Zhang ◽  
Zhi-Xin Lin ◽  
...  

Abstract The low-abundantly expressed genes composed the majorities of the mRNAs expressed in the central nervous system (CNS), and were thought to be important for the normal brain functions. Through differential screening a low-abundance cDNA sublibrary with mRNA from neuropathic pain of chronic constriction injury (CCI) model, we have identified a novel rat gene, rat spinal-cord expression protein 4 gene (RSEP4). The total length of RSEP4 cDNA is 2006 bp, with a 501 nucleotide open reading frame (ORF) that encodes a 167 amino acid polypeptide. Northern blot revealed that RSEP4 was expressed specifically in the CNS. In situ hybridization showed that the mRNA of RSEP4 was strongly expressed in the CA1, CA2, CA3 and DG regions of hippocampus, the Purkinje cells of cerebellum, and the small sensory neurons of dorsal horn and large motor neurons of ventral horn of spinal cord. Over-expression of RSEP4-EGFP fusion protein in the human embryonic kidney 293T cells showed that RSEP4 protein was mainly localized in the cell cytoplasm. These results suggest that RSEP4 may play some roles in the CNS.


Sign in / Sign up

Export Citation Format

Share Document