scholarly journals A new method for safety classification of structures, systems and components by reflecting nuclear reactor operating history into importance measures

Author(s):  
Jie Cheng ◽  
Jie Liu ◽  
Shanqi Chen ◽  
Yazhou Li ◽  
Jin Wang ◽  
...  
foresight ◽  
2017 ◽  
Vol 19 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Mohammad Rahim Eivazi ◽  
Jafar Sajjadi

Purpose The purpose of this paper is threefold: to classify wildcards into three particular types sharing similar characteristics; use the Fuzzy TOPSIS as a new method in foresight to turn qualitative ideas into quantitative ones; and apply a combination of Fuzzy TOPSIS and a panel of experts to prioritize weak signals. Design/methodology/approach In this paper, the authors classify wildcards into three particular types which share similar character: natural wildcards, artificial wildcards (Degree 1) and artificial wildcards (Degree 2). Wildcards point to unexpected and surprising events including important results that can form watershed in the development of a specific trend. In addition, the authors present a Fuzzy TOPSIS model which can be used in various cases to prioritize a number of weak signals and put them in order, so that the most important ones are likely to yield the wildcard in the future Findings The authors presented a classification of wildcards with the same characteristics being natural wildcards, artificial wildcards (Degree 1) and artificial wildcards (Degree 2). The authors also prioritized the weak signals to deal with the most important ones and take appropriate action in advance so as to minimize possible damages and maximize the benefits of potential wildcards in an uncertain environment. Originality/value In this paper, the authors report on the prioritizing of weak signals by applying Fuzzy TOPSIS and classify wildcards. This is significant because, by identifying the most important weak signals, appropriate actions can be taken in the future if necessary. The paper should be of interest to readers in the area of participatory foresight.


2019 ◽  
Vol 72 (5) ◽  
pp. 1246-1274 ◽  
Author(s):  
Reinier Storm

AbstractA new method for classifying naturally reductive spaces is presented. This method relies on a new construction and the structure theory of naturally reductive spaces recently developed by the author. This method is applied to obtain the classification of all naturally reductive spaces in dimension 7 and 8.


Author(s):  
T. L. Dickson ◽  
M. T. EricksonKirk

The current regulations, as set forth by the United States Nuclear Regulatory Commission (NRC), to insure that light-water nuclear reactor pressure vessels (RPVs) maintain their structural integrity when subjected to planned startup (heat-up) and shutdown (cool-down) transients are specified in Appendix G to 10 CFR Part 50, which incorporates by reference Appendix G to Section XI of the ASME Code. The technical basis for these regulations contains many aspects that are now broadly recognized by the technical community as being unnecessarily conservative. During the past decade, the NRC conducted the interdisciplinary Pressurized Thermal Shock (PTS) Re-evaluation Project that established a technical basis to support a risk-informed revision to current PTS regulations (10CFR Part 50.61). Once the results of the PTS reevaluation are incorporated into a revision of the 10 CFR 50 guidance on PTS, it is anticipated that the regulatory requirements for the fracture toughness of the RPV required to withstand a PTS event (accidental loading) will in some cases be less restrictive than the current requirements of Appendix G to 10 CFR Part 50, which apply to normal operating conditions. This logical inconsistency occurs because the new PTS guidelines will be based on realistic models and inputs whereas existing Appendix G requirements contain known and substantial conservatisms. Consequently, a goal of current NRC research is to derive a technical basis for a risk-informed revision to the current requirements of Appendix G to 10 CFR Part 50 in a manner that is consistent with that used to develop the risk-informed revision to the PTS regulations. Scoping probabilistic fracture mechanics (PFM) analyses have been performed for several hundred parameterized cool-down transients to (1) obtain insights regarding the interaction of operating temperature and pressure parameters on the conditional probability of crack initiation and vessel failure and (2) determine the limits on the permissible combinations of operating temperature and pressure within which the reactor may be brought into or out of an operational condition that remains below the acceptance criteria adopted for PTS of 1 × 10−6 failed RPVs per reactor operating year. This paper discusses the modeling assumptions, results, and implications of these scoping analyses.


Author(s):  
Alberto Sáez-Maderuelo ◽  
María Luisa Ruiz-Lorenzo ◽  
Francisco Javier Perosanz ◽  
Patricie Halodová ◽  
Jan Prochazka ◽  
...  

Abstract Alloy 690, which was designed as a replacement for the Alloy 600, is widely used in the nuclear industry due to its optimum behavior to stress corrosion cracking (SCC) under nuclear reactor operating conditions. Because of this superior resistance, alloy 690 has been proposed as a candidate structural material for the Supercritical Water Reactor (SCWR), which is one of the designs of the next generation of nuclear power plants (Gen IV). In spite of this, striking results were found [1] when alloy 690 was tested without intergranular carbides. These results showed that, contrary to expectations, the crack growth rate is lower in samples without intergranular carbides than in samples with intergranular carbides. Therefore, the role of the carbides in the corrosion behavior of Alloy 690 is not yet well understood. Considering these observations, the aim of this work is to study the effect of intergranular carbides in the oxidation behavior (as a preliminary stage of degenerative processes SCC) of Alloy 690 in supercritical water (SCW) at two temperatures: 400 °C and 500 °C and 25 MPa. Oxide layers of selected specimens were studied by different techniques like Scanning Electron Microscope (SEM) and Auger Electron Spectroscopy (AES).


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Shengyuan Song ◽  
Qiang Xu ◽  
Jianping Chen ◽  
Wen Zhang ◽  
Chen Cao ◽  
...  

Engineering classification of complex jointed rock mass is influenced and controlled by many factors with random, nonlinear, and unascertained characteristics, which is an extremely complicated problem. This paper introduces a comprehensive method to classify the rock mass with complex joints. Firstly, evaluation indexes are described by the interval number theory. Secondly, the weight values of the evaluation indexes are determined by the analytic hierarchy process (AHP). Thirdly, the connectional expectation between interval numbers is analyzed and the classification grade of jointed rock mass quality is identified by the set pair analysis theory. The new method can not only describe the dynamic evolution trend of various influencing factors, but also simplify the analysis process of the relationship between interval numbers. The Songta dam abutment rock mass is selected as a study case to verify the rationality of the new method. The classification results of rock mass quality obtained by the new method are in accordance with the actual situation and are consistent with the results provided by the RMR classification.


Sign in / Sign up

Export Citation Format

Share Document