Training sensory–motor behavior in the connectome of an artificial C. elegans

2015 ◽  
Vol 168 ◽  
pp. 128-134 ◽  
Author(s):  
Thomas E. Portegys
Author(s):  
Taylor E. Branyan ◽  
Amutha Selvamani ◽  
Min Jung Park ◽  
Kriti E. Korula ◽  
Kelby F. Kosel ◽  
...  

AbstractMicroRNAs have gained popularity as a potential treatment for many diseases, including stroke. This study identifies and characterizes a specific member of the miR-17–92 cluster, miR-20a-3p, as a possible stroke therapeutic. A comprehensive microRNA screening showed that miR-20a-3p was significantly upregulated in astrocytes of adult female rats, which typically have better stroke outcomes, while it was profoundly downregulated in astrocytes of middle-aged females and adult and middle-aged males, groups that typically have more severe stroke outcomes. Assays using primary human astrocytes and neurons show that miR-20a-3p treatment alters mitochondrial dynamics in both cell types. To assess whether stroke outcomes could be improved by elevating astrocytic miR-20a-3p, we created a tetracycline (Tet)-induced recombinant adeno-associated virus (rAAV) construct where miR-20a-3p was located downstream a glial fibrillary acidic protein promoter. Treatment with doxycycline induced miR-20-3p expression in astrocytes, reducing mortality and modestly improving sensory motor behavior. A second Tet-induced rAAV construct was created in which miR-20a-3p was located downstream of a neuron-specific enolase (NSE) promoter. These experiments demonstrate that neuronal expression of miR-20a-3p is vastly more neuroprotective than astrocytic expression, with animals receiving the miR-20a-3p vector showing reduced infarction and sensory motor improvement. Intravenous injections, which are a therapeutically tractable treatment route, with miR-20a-3p mimic 4 h after middle cerebral artery occlusion (MCAo) significantly improved stroke outcomes including infarct volume and sensory motor performance. Improvement was not observed when miR-20a-3p was given immediately or 24 h after MCAo, identifying a unique delayed therapeutic window. Overall, this study identifies a novel neuroprotective microRNA and characterizes several key pathways by which it can improve stroke outcomes.


2000 ◽  
Vol 83 (2) ◽  
pp. 895-906 ◽  
Author(s):  
John H. Martin ◽  
Laura Donarummo ◽  
Antony Hacking

This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3–7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. Animals that had not received muscimol infusion (unilateral saline infusion; age-matched) reached for the meat accurately with small end-point errors. They grasped the meat using coordinated digit flexion followed by forearm supination on 82.7% of trials. Performance using either limb did not differ significantly. In animals receiving unilateral muscimol infusion, reaching and grasping using the limb ipsilateral to the infusion were similar to controls. The limb contralateral to infusion showed significant increases in systematic and variable reaching end-point errors, often requiring subsequent corrective movements to contact the meat. Grasping occurred on only 14.8% of trials, replaced on most trials by raking without distal movements. Compensatory adjustments in reach length and angle, to maintain end-point accuracy as movements were started from a more lateral position, were less effective using the contralateral limb than ipsilateral limb. With bilateral inactivations, the form of reaching and grasping impairments was identical to that produced by unilateral inactivation, but the magnitude of the reaching impairments was less. We discuss these results in terms of the differential effects of unilateral and bilateral inactivation on corticospinal tract development. We also investigated the degree to which these prehension impairments after unilateral blockade reflect control by each hemisphere. In animals that had received unilateral blockade between postnatal weeks (PWs) 3 and 7, we silenced on-going activity (after PW 11) during task performance using continuous muscimol infusion. We inactivated the right (previously active) and then the left (previously silenced) sensory motor cortex. Inactivation of the ipsilateral (right) sensory motor cortex produced a further increase in systematic error and less frequent normal grasping. Reinactivation of the contralateral (left) cortex produced larger increases in reaching and grasping impairments than those produced by ipsilateral inactivation. This suggests that the impaired limb receives bilateral sensory motor cortex control but that control by the contralateral (initially silenced) cortex predominates. Our data are consistent with the hypothesis that the normal development of skilled motor behavior requires activity in sensory motor cortex during early postnatal life.


PLoS Biology ◽  
2018 ◽  
Vol 16 (6) ◽  
pp. e2004929 ◽  
Author(s):  
Jihye Yeon ◽  
Jinmahn Kim ◽  
Do-Young Kim ◽  
Hyunmin Kim ◽  
Jungha Kim ◽  
...  

Cell ◽  
2014 ◽  
Vol 156 (1-2) ◽  
pp. 249-260 ◽  
Author(s):  
Julie Y. Cho ◽  
Paul W. Sternberg

1985 ◽  
Vol 35 (5) ◽  
pp. 659-666 ◽  
Author(s):  
Pierre Roubertoux ◽  
Catherine Semal ◽  
Sylvie Ragueneau

2020 ◽  
Author(s):  
Zhaoyu Li ◽  
Jiejun Zhou ◽  
Khursheed Wani ◽  
Teng Yu ◽  
Elizabeth A. Ronan ◽  
...  

AbstractHow neural circuits drive behavior is a central question in neuroscience. Proper execution of motor behavior requires the precise coordination of many neurons. Within a motor circuit, individual neurons tend to play discrete roles by promoting or suppressing motor output. How exactly neurons function in specific roles to fine tune motor output is not well understood. In C. elegans, the interneuron RIM plays important yet complex roles in locomotion behavior. Here, we show that RIM both promotes and suppresses distinct features of locomotion behavior to fine tune motor output. This dual function is achieved via the excitation and inhibition of the same motor circuit by electrical and chemical neurotransmission, respectively. Additionally, this bi-directional regulation contributes to motor adaptation in animals placed in novel environments. Our findings reveal that individual neurons within a neural circuit may act in opposing ways to regulate circuit dynamics to fine tune behavioral output.


2019 ◽  
Author(s):  
Scott Linderman ◽  
Annika Nichols ◽  
David Blei ◽  
Manuel Zimmer ◽  
Liam Paninski

AbstractModern recording techniques enable large-scale measurements of neural activity in a variety of model organisms. The dynamics of neural activity shed light on how organisms process sensory information and generate motor behavior. Here, we study these dynamics using optical recordings of neural activity in the nematode C. elegans. To understand these data, we develop state space models that decompose neural time-series into segments with simple, linear dynamics. We incorporate these models into a hierarchical framework that combines partial recordings from many worms to learn shared structure, while still allowing for individual variability. This framework reveals latent states of population neural activity, along with the discrete behavioral states that govern dynamics in this state space. We find stochastic transition patterns between discrete states and see that transition probabilities are determined by both current brain activity and sensory cues. Our methods automatically recover transition times that closely match manual labels of different behaviors, such as forward crawling, reversals, and turns. Finally, the resulting model can simulate neural data, faithfully capturing salient patterns of whole brain dynamics seen in real data.


Sign in / Sign up

Export Citation Format

Share Document