locomotion behavior
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 26)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 14 (12) ◽  
pp. 1224
Author(s):  
Rosario Licitra ◽  
Marco Martinelli ◽  
Luigi Petrocchi Jasinski ◽  
Maria Marchese ◽  
Claudia Kiferle ◽  
...  

Historically, humans have been using Cannabis sativa for both recreational and medical purposes. Nowadays, cannabis-based products have gained scientific interest due to their beneficial effects on several syndromes and illnesses. The biological activity of cannabinoids is essentially due to the interaction with the endocannabinoid system, and zebrafish (Danio rerio) is a very well-known and powerful in vivo model for studying such specific interactions. The aim of the study was to investigate the effects of different doses of a Cannabis sativa whole extract [dissolved in dimethyl sulfoxide (DMSO)] on zebrafish eggs’ hatchability, embryo post-hatching survival, larvae locomotion behavior and mRNA gene expression. The results showed the absence of toxicity, and no significant differences were observed between treatments for both embryo hatching and survival rate. In addition, larvae exposed to the cannabis extract at the highest dose [containing 1.73 nM and 22.3 nM of ∆9-tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively] showed an increased locomotion compared to the control and DMSO treated groups. Moreover, qRT-PCR analysis showed that the highest dosage of cannabis induced an over-expression of cnr1 and cnr2 cannabinoid receptors. In conclusion, the exposition of zebrafish larvae to the whole extract of Cannabis sativa showed no negative effects on embryo development and survival and enhanced the larvae’s locomotor performances. These findings may open up possible Cannabis sativa applications in human pharmacology as well as in other animal sectors.


2021 ◽  
Author(s):  
Maria Belen Harreguy ◽  
Esha Shah ◽  
Zainab Tanvir ◽  
Blandine Simprevil ◽  
Tracy S. Tran ◽  
...  

Extracellular signaling proteins serve as neuronal growth cone guidance molecules during development and are well positioned to be involved in neuronal regeneration and recovery from injury. Semaphorins and their receptors, the plexins, are a family of conserved proteins involved in development that, in the nervous system, are axonal guidance cues mediating axon pathfinding and synapse formation. The Caenorhabditis elegans genome encodes for three semaphorins and two plexin receptors: the transmembrane semaphorins, SMP-1 and SMP-2, signal through their receptor, PLX-1, while the secreted semaphorin, MAB-20, signals through PLX-2. Here, we determined the neuronal morphology and locomotion behavior of knockout animals missing each of the semaphorins and plexins; we described the expression pattern of all plexins in the nervous system of C. elegans; and we evaluated their effect on the regeneration of motoneuron neurites and the recovery of locomotion behavior following precise laser microsurgery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yunjia Deng ◽  
Huihui Du ◽  
Mingfeng Tang ◽  
Qilong Wang ◽  
Qian Huang ◽  
...  

AbstractAcinetobacter has been frequently detected in backwater areas of the Three Gorges Reservoir (TGR) region. We here employed Caenorhabditis elegans to perform biosafety assessment of Acinetobacter strains isolated from backwater area in the TGR region. Among 21 isolates and 5 reference strains of Acinetobacter, exposure to Acinetobacter strains of AC1, AC15, AC18, AC21, A. baumannii ATCC 19606T, A. junii NH88-14, and A. lwoffii DSM 2403T resulted in significant decrease in locomotion behavior and reduction in lifespan of Caenorhabditis elegans. In nematodes, exposure to Acinetobacter strains of AC1, AC15, AC18, AC21, A. baumannii, A. junii and A. lwoffii also resulted in significant reactive oxygen species (ROS) production. Moreover, exposure to Acinetobacter isolates of AC1, AC15, AC18, and AC21 led to significant increase in expressions of both SOD-3::GFP and some antimicrobial genes (lys-1, spp-12, lys-7, dod-6, spp-1, dod-22, lys-8, and/or F55G11.4) in nematodes. The Acinetobacter isolates of AC1, AC15, AC18, and AC21 had different morphological, biochemical, phylogenetical, and virulence gene properties. Our results suggested that exposure risk of some Acinetobacter strains isolated from the TGR region exists for environmental organisms and human health. In addition, C. elegans is useful to assess biosafety of Acinetobacter isolates from the environment.


2021 ◽  
Author(s):  
Tian A. Qiu ◽  
Harvey M. Andersen ◽  
Nissa J. Larson ◽  
Nathan E. Schroeder ◽  
Jonathan V. Sweedler

Free D-serine (D-Ser) is a potent co-agonist of the N-methyl-D-aspartate receptor (NMDAR) in glutamate neurotransmission and regulates NMDAR functions in the nervous system. Serine racemases convert L-serine to D-Ser and are believed to be the major source of D-Ser in animals. In Caenorhabditis elegans, a knockout of the serine racemase serr-1 results in behavioral changes, but the level of D-Ser is unaffected. By growing C. elegans on peptone-free nematode growth medium (PF-NGM), we delineated the sources of D-Ser, both exogenous from peptone in culturing media and endogenous from the serine racemase serr-1, and a potential serine/aspartate racemase candidate, Y51H7C.9, identified by sequence similarity network analysis. We also discovered a new serine dehydratase (aka serine ammonia-lyase), K01C8.1, in C. elegans. We identified the serr-1 knockout and PF-NGM culturing conditions as two independent factors that impact C. elegans locomotion behavior after off-food, both short-term and long-term, and no interactions were found between the two factors.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3243
Author(s):  
Robert Jackermeier ◽  
Bernd Ludwig

In smartphone-based pedestrian navigation systems, detailed knowledge about user activity and device placement is a key information. Landmarks such as staircases or elevators can help the system in determining the user position when located inside buildings, and navigation instructions can be adapted to the current context in order to provide more meaningful assistance. Typically, most human activity recognition (HAR) approaches distinguish between general activities such as walking, standing or sitting. In this work, we investigate more specific activities that are tailored towards the use-case of pedestrian navigation, including different kinds of stationary and locomotion behavior. We first collect a dataset of 28 combinations of device placements and activities, in total consisting of over 6 h of data from three sensors. We then use LSTM-based machine learning (ML) methods to successfully train hierarchical classifiers that can distinguish between these placements and activities. Test results show that the accuracy of device placement classification (97.2%) is on par with a state-of-the-art benchmark in this dataset while being less resource-intensive on mobile devices. Activity recognition performance highly depends on the classification task and ranges from 62.6% to 98.7%, once again performing close to the benchmark. Finally, we demonstrate in a case study how to apply the hierarchical classifiers to experimental and naturalistic datasets in order to analyze activity patterns during the course of a typical navigation session and to investigate the correlation between user activity and device placement, thereby gaining insights into real-world navigation behavior.


2021 ◽  
Vol 125 (5) ◽  
pp. 1612-1623
Author(s):  
Udaysankar Chockanathan ◽  
Emily J. W. Crosier ◽  
Spencer Waddle ◽  
Edward Lyman ◽  
Richard C. Gerkin ◽  
...  

The organization and structure of spontaneous population activity in the olfactory system places constraints of how odor information is represented. Using high-density electrophysiological recordings of mitral and tufted cells, we found that running increases the dimensionality of spontaneous activity, implicating higher order interactions among neurons during locomotion. Behavior, thus, flexibly alters neuronal activity at the earliest stages of sensory processing.


2021 ◽  
Author(s):  
Yunjia Deng ◽  
Huihui Du ◽  
Mingfeng Tang ◽  
Qilong Wang ◽  
Qian Huang ◽  
...  

Abstract Acinetobacter is an important nosocomial pathogen frequently detected in backwater areas of the Three Gorges Reservoir (TGR) region. We here employed Caenorhabditis elegans to perform biosafety assessment of Acinetobacter strains isolated from the backwater area in the TGR region and reference strains. Among 21 isolates and 5 reference strains of Acinetobacter, exposure to Acinetobacter strains of AC1, AC15, AC18, AC21, A. baumannii ATCC 19606T, A. junii NH88-14 and A. lwoffii DSM 2403T resulted in significant decrease in locomotion behavior and reduction in lifespan. In nematodes, exposure to Acinetobacter strains of AC1, AC15, AC18, AC21, A. baumannii, A. junii and A. lwoffii also resulted in significant reactive oxygen species (ROS) production. Moreover, exposure to Acinetobacter isolates of AC1, AC15, AC18, and AC21 led to significant increase in expressions of both SOD-3::GFP and some antimicrobial genes (lys-1, spp-12, lys-7, dod-6, spp-1, dod-22, lys-8, and/or F55G11.4) in nematodes. The Acinetobacter isolates of AC1, AC15, AC18, and AC21 had different morphological, biochemical, and phylogenetical properties. Our results suggested that it exists the exposure risk of some Acinetobacter strains isolated from the TGR region for environmental organisms and human health, and Caenorhabditis elegans can be used to assess the biosafety of Acinetobacter isolates from the environment.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009429
Author(s):  
Miguel Carneiro ◽  
Jennifer Vieillard ◽  
Pedro Andrade ◽  
Samuel Boucher ◽  
Sandra Afonso ◽  
...  

Saltatorial locomotion is a type of hopping gait that in mammals can be found in rabbits, hares, kangaroos, and some species of rodents. The molecular mechanisms that control and fine-tune the formation of this type of gait are unknown. Here, we take advantage of one strain of domesticated rabbits, thesauteur d’Alfort, that exhibits an abnormal locomotion behavior defined by the loss of the typical jumping that characterizes wild-type rabbits. Strikingly, individuals from this strain frequently adopt a bipedal gait using their front legs. Using a combination of experimental crosses and whole genome sequencing, we show that a single locus containing the RAR related orphan receptor B gene (RORB) explains the atypical gait of these rabbits. We found that a splice-site mutation in an evolutionary conserved site ofRORBresults in several aberrant transcript isoforms incorporating intronic sequence. This mutation leads to a drastic reduction of RORB-positive neurons in the spinal cord, as well as defects in differentiation of populations of spinal cord interneurons. Our results show thatRORBfunction is required for the performance of saltatorial locomotion in rabbits.


2021 ◽  
Vol 69 (Suppl.1) ◽  
pp. 501-513
Author(s):  
Pablo-E. Meretta ◽  
Carlos-Renato Rezende-Ventura

Introduction: The locomotion behavior of an organism involves the integration of aspects like body symmetry, sensory and locomotor systems. Furthermore, various ecological factors seem to be related to locomotion characteristics, such as foraging strategy, migration trends, response to predators and competitors, and environmental stress. Objective: To analyze locomotion and the influence of body symmetry in the crawling and righting movements of the sea star Asterina stellifera. Methods: We carried out laboratory experiments in aquariums in the presence/absence of water current and on a horizontal and vertical surface. Results: The speed is similar to speed in other species of similar size. Both the speed and linearity of displacement were independent of individual body size. A water current leads to faster crawling and straight paths, but there is no rheotaxis: streams do not affect locomotion. Speed and linearity of displacement were independent of individual body size. The displacement pattern described here may be an adaptation of organisms that present dense populations in communities with high prey abundance, as is the case of A. stellifera. Conclusions: Like other asteroids, this species did not show an Anterior/Posterior plane of symmetry during locomotion, or righting movement: it does not tend to bilaterality.


Sign in / Sign up

Export Citation Format

Share Document