Fixed-time adaptive neural tracking control of output constrained nonlinear pure-feedback system with input saturation

2021 ◽  
Author(s):  
Cheng He ◽  
Jian Wu ◽  
Jiyang Dai ◽  
Zhe Zhang
2021 ◽  
Author(s):  
ming chen

Abstract Based on Lyapunov finite-time stability theory and backstepping strategy, we put forward a novel fixed-time bounded H infinity tracking control scheme for a single-joint manipulator system with input saturation. The main control objective is to maintain that the system output variable tracks the desired signal at fixed time. The advantages of this paper are the settling time of the tracking error converging to the origin is independent of the initial conditions, and its convergence speed is more faster. Meanwhile, bounded H infinity control is adopted to suppress the influence of the external disturbances on the controlled system. At the same time, the problem of input saturation control is considered, which effectively reduce the input energy consumption. Theoretical analysis shows that the tracking error of the closed-loop system converges to a small neighborhood of the origin within fixed time. In the end, a simulation example is presented to demonstrate the effectiveness of the proposed scheme.


Author(s):  
Heli Gao ◽  
Mou Chen

This paper studies the fixed-time disturbance estimate and tracking control for two-link manipulators subjected to external disturbance. A fixed-time extended-state disturbance observer (FxTESDO) is proposed by improving the extended state observer. Also, a fixed-time inverse dynamics tracking control (FxTIDTC) scheme based on the FxTESDO is given for two-link manipulators. The fixed-time convergence of the FxTESDO and FxTIDTC is proved by the Lyapunov stability theory and with the aid of the bi-limit homogeneous technique. Numerical simulations are employed to illustrate the effectiveness of the proposed FxTIDTC.


Author(s):  
Chengyong Zhang ◽  
Yaolong Chen

In this paper, the active-disturbance-rejection control (ADRC) is applied to realize the high-precision tracking control of CNC machine tool feed drives. First, according to the number of the feedback channel, the feed systems are divided into two types: signal-feedback system, e.g., linear motor and rotary table, and double-feedback system, e.g., ball screw feed drive with a load/table position feedback. Then, the appropriate controller is designed to ensure the closed-loop control performance of each type of system based on the idea of ADRC. In these control frameworks, the extended state observers (ESO) estimate and compensate for unmodeled dynamics, parameter perturbations, variable cutting load, and other uncertainties. For the signal-feedback system, the modified ADRC with an acceleration feedforward term is used directly to regulate the load/table position response. However, for the double-feedback system, the ADRC is applied only to the motor position control, and a simple PI controller is used to achieve the accurate position control of the load. In addition, based on ADRC feedback linearization, a novel equivalent-error-model based feedforward controller is designed to further improve the command following performance of the double-feedback system. The experimental results demonstrate that the proposed controllers of both systems have better tracking performance and robustness against the external disturbance compared with the conventional P-PI controller.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1416
Author(s):  
Guang-Hui Xu ◽  
Meng Li ◽  
Jie Chen ◽  
Qiang Lai ◽  
Xiao-Wen Zhao

This paper investigates formation tracking control for multi-agent networks with fixed time convergence. The control task is that the follower agents are required to form a prescribed formation within a fixed time and the geometric center of the formation moves in sync with the leader. First, an error system is designed by using the information of adjacent agents and a new control protocol is designed based on the error system and terminal sliding mode control (TSMC). Then, via employing the Lyapunov stability theorem and the fixed time stability theorem, the control task is proved to be possible within a fixed time and the convergence time can be calculated by parameters. Finally, numerical results illustrate the feasibility of the proposed control protocol.


Sign in / Sign up

Export Citation Format

Share Document