Dopamine D1 receptor activation improves adult hippocampal neurogenesis and exerts anxiolytic and antidepressant-like effect via activation of Wnt/β-catenin pathways in rat model of Parkinson's disease

2019 ◽  
Vol 122 ◽  
pp. 170-186 ◽  
Author(s):  
Akanksha Mishra ◽  
Sonu Singh ◽  
Virendra Tiwari ◽  
Parul ◽  
Shubha Shukla
2008 ◽  
Vol 1203 ◽  
pp. 189-196 ◽  
Author(s):  
Takashi Agari ◽  
Takao Yasuhara ◽  
Toshihiro Matsui ◽  
Satoshi Kuramoto ◽  
Akihiko Kondo ◽  
...  

2018 ◽  
Author(s):  
Amanda K E Hornsby ◽  
Vanessa V Santos ◽  
Fionnuala Johnston ◽  
Luke D Roberts ◽  
Romana Stark ◽  
...  

Blood-borne factors regulate adult hippocampal neurogenesis (AHN) and cognition in mammals, albeit via mechanisms that are poorly understood. We report that elevating circulating unacylated-ghrelin (UAG), using both pharmacological and genetic methods, reduced hippocampal neurogenesis and plasticity in mice. Spatial memory impairments observed in GOAT-/- mice that lack acyl-ghrelin (AG) but have high levels of UAG, were rescued by treatment with AG. This unexpected finding suggests that the post-translational acylation of ghrelin is an important modulator of neurogenesis and memory in adult mammals. To determine whether this paradigm is relevant to humans we analysed circulating AG:UAG levels in Parkinson's disease (PD) patients diagnosed with dementia (PDD), cognitively intact PD patients and healthy controls. Uniquely, the ratio of plasma AG:UAG was reduced in the PDD cohort and correlated with cognitive performance. Our results identify UAG as a novel regulator of neurogenesis and cognition, and AG:UAG as a circulating diagnostic biomarker of dementia. The findings extend our understanding of adult brain plasticity regulation by circulating factors and suggest that manipulating the post-translational acylation of plasma ghrelin may offer therapeutic opportunities to ameliorate cognitive decline.


2016 ◽  
Vol 85 ◽  
pp. 206-217 ◽  
Author(s):  
Zacharias Kohl ◽  
Nada Ben Abdallah ◽  
Jonathan Vogelgsang ◽  
Lucas Tischer ◽  
Janina Deusser ◽  
...  

2022 ◽  
Vol 15 ◽  
Author(s):  
Jace Jones-Tabah ◽  
Hanan Mohammad ◽  
Emma G. Paulus ◽  
Paul B. S. Clarke ◽  
Terence E. Hébert

The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR that is expressed in the midbrain and forebrain, regulating motor behavior, reward, motivational states, and cognitive processes. Although the D1R was initially identified as a promising drug target almost 40 years ago, the development of clinically useful ligands has until recently been hampered by a lack of suitable candidate molecules. The emergence of new non-catechol D1R agonists, biased agonists, and allosteric modulators has renewed clinical interest in drugs targeting this receptor, specifically for the treatment of motor impairment in Parkinson's Disease, and cognitive impairment in neuropsychiatric disorders. To develop better therapeutics, advances in ligand chemistry must be matched by an expanded understanding of D1R signaling across cell populations in the brain, and in disease states. Depending on the brain region, the D1R couples primarily to either Gαs or Gαolf through which it activates a cAMP/PKA-dependent signaling cascade that can regulate neuronal excitability, stimulate gene expression, and facilitate synaptic plasticity. However, like many GPCRs, the D1R can signal through multiple downstream pathways, and specific signaling signatures may differ between cell types or be altered in disease. To guide development of improved D1R ligands, it is important to understand how signaling unfolds in specific target cells, and how this signaling affects circuit function and behavior. In this review, we provide a summary of D1R-directed signaling in various neuronal populations and describe how specific pathways have been linked to physiological and behavioral outcomes. In addition, we address the current state of D1R drug development, including the pharmacology of newly developed non-catecholamine ligands, and discuss the potential utility of D1R-agonists in Parkinson's Disease and cognitive impairment.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Martin Regensburger ◽  
Iryna Prots ◽  
Beate Winner

In Parkinson’s disease (PD) and other synucleinopathies, chronic neurodegeneration occurs within different areas of the central nervous system leading to progressive motor and nonmotor symptoms. The symptomatic treatment options that are currently available do not slow or halt disease progression. This highlights the need of a better understanding of disease mechanisms and disease models. The generation of newborn neurons in the adult hippocampus and in the subventricular zone/olfactory bulb system is affected by many different regulators and possibly involved in memory processing, depression, and olfaction, symptoms which commonly occur in PD. The pathology of the adult neurogenic niches in human PD patients is still mostly elusive, but different preclinical models have shown profound alterations of adult neurogenesis. Alterations in stem cell proliferation, differentiation, and survival as well as neurite outgrowth and spine formation have been related to different aspects in PD pathogenesis. Therefore, neurogenesis in the adult brain provides an ideal model to study disease mechanisms and compounds. In addition, adult newborn neurons have been proposed as a source of endogenous repair. Herein, we review current knowledge about the adult neurogenic niches in PD and highlight areas of future research.


Sign in / Sign up

Export Citation Format

Share Document