scholarly journals Circulating unacylated-ghrelin impairs hippocampal neurogenesis and memory in mice and is altered in human Parkinson's disease dementia

2018 ◽  
Author(s):  
Amanda K E Hornsby ◽  
Vanessa V Santos ◽  
Fionnuala Johnston ◽  
Luke D Roberts ◽  
Romana Stark ◽  
...  

Blood-borne factors regulate adult hippocampal neurogenesis (AHN) and cognition in mammals, albeit via mechanisms that are poorly understood. We report that elevating circulating unacylated-ghrelin (UAG), using both pharmacological and genetic methods, reduced hippocampal neurogenesis and plasticity in mice. Spatial memory impairments observed in GOAT-/- mice that lack acyl-ghrelin (AG) but have high levels of UAG, were rescued by treatment with AG. This unexpected finding suggests that the post-translational acylation of ghrelin is an important modulator of neurogenesis and memory in adult mammals. To determine whether this paradigm is relevant to humans we analysed circulating AG:UAG levels in Parkinson's disease (PD) patients diagnosed with dementia (PDD), cognitively intact PD patients and healthy controls. Uniquely, the ratio of plasma AG:UAG was reduced in the PDD cohort and correlated with cognitive performance. Our results identify UAG as a novel regulator of neurogenesis and cognition, and AG:UAG as a circulating diagnostic biomarker of dementia. The findings extend our understanding of adult brain plasticity regulation by circulating factors and suggest that manipulating the post-translational acylation of plasma ghrelin may offer therapeutic opportunities to ameliorate cognitive decline.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Martin Regensburger ◽  
Iryna Prots ◽  
Beate Winner

In Parkinson’s disease (PD) and other synucleinopathies, chronic neurodegeneration occurs within different areas of the central nervous system leading to progressive motor and nonmotor symptoms. The symptomatic treatment options that are currently available do not slow or halt disease progression. This highlights the need of a better understanding of disease mechanisms and disease models. The generation of newborn neurons in the adult hippocampus and in the subventricular zone/olfactory bulb system is affected by many different regulators and possibly involved in memory processing, depression, and olfaction, symptoms which commonly occur in PD. The pathology of the adult neurogenic niches in human PD patients is still mostly elusive, but different preclinical models have shown profound alterations of adult neurogenesis. Alterations in stem cell proliferation, differentiation, and survival as well as neurite outgrowth and spine formation have been related to different aspects in PD pathogenesis. Therefore, neurogenesis in the adult brain provides an ideal model to study disease mechanisms and compounds. In addition, adult newborn neurons have been proposed as a source of endogenous repair. Herein, we review current knowledge about the adult neurogenic niches in PD and highlight areas of future research.


2020 ◽  
Vol 18 ◽  
Author(s):  
Marco Carli ◽  
Stefano Aringhieri ◽  
Shivakumar Kolachalam ◽  
Biancamaria Longoni ◽  
Giovanna Grenno ◽  
...  

: Adult neurogenesis consists in the generation of newborn neurons from neural stem cells taking place in the adult brain. In mammals, this process is limited to very few areas of the brain, and one of these neurogenic niches is the subgranular layer of the dentate gyrus (DG) of the hippocampus. Adult newborn neurons are generated from quiescent neural progenitors (QNPs), which differentiate through different steps into mature granule cells (GCs), to be finally integrated into the existing hippocampal circuitry. In animal models, adult hippocampal neurogenesis (AHN) is relevant for pattern discrimination, cognitive flexibility, emotional processing and resilience to stressful situations. Imaging techniques allow to visualize newborn neurons within the hippocampus through all their stages of development and differentiation. In humans, the evidence of AHN is more challenging, and, based on recent findings, it persists through the adulthood, even if it declines with age. Whether this process has an important role in human brain function and how it integrates into the existing hippocampal circuitry is still a matter of exciting debate. Importantly, AHN deficiency has been proposed to be relevant in many psychiatric disorders, including mood disorders, anxiety, post-traumatic stress disorder and schizophrenia. This review aims to investigate how AHN is altered in different psychiatric conditions and how pharmacological treatments can rescue this process. In fact, many psychoactive drugs, such as antidepressants, mood stabilizers and atypical antipsychotics (AAPs), can boost AHN with different results. In addition, some non-pharmacological approaches are discussed as well.


2019 ◽  
Vol 20 (14) ◽  
pp. 3407 ◽  
Author(s):  
Paola Imbriani ◽  
Annalisa Tassone ◽  
Maria Meringolo ◽  
Giulia Ponterio ◽  
Graziella Madeo ◽  
...  

Caspases are a family of conserved cysteine proteases that play key roles in multiple cellular processes, including programmed cell death and inflammation. Recent evidence shows that caspases are also involved in crucial non-apoptotic functions, such as dendrite development, axon pruning, and synaptic plasticity mechanisms underlying learning and memory processes. The activated form of caspase-3, which is known to trigger widespread damage and degeneration, can also modulate synaptic function in the adult brain. Thus, in the present study, we tested the hypothesis that caspase-3 modulates synaptic plasticity at corticostriatal synapses in the phosphatase and tensin homolog (PTEN) induced kinase 1 (PINK1) mouse model of Parkinson’s disease (PD). Loss of PINK1 has been previously associated with an impairment of corticostriatal long-term depression (LTD), rescued by amphetamine-induced dopamine release. Here, we show that caspase-3 activity, measured after LTD induction, is significantly decreased in the PINK1 knockout model compared with wild-type mice. Accordingly, pretreatment of striatal slices with the caspase-3 activator α-(Trichloromethyl)-4-pyridineethanol (PETCM) rescues a physiological LTD in PINK1 knockout mice. Furthermore, the inhibition of caspase-3 prevents the amphetamine-induced rescue of LTD in the same model. Our data support a hormesis-based double role of caspase-3; when massively activated, it induces apoptosis, while at lower level of activation, it modulates physiological phenomena, like the expression of corticostriatal LTD. Exploring the non-apoptotic activation of caspase-3 may contribute to clarify the mechanisms involved in synaptic failure in PD, as well as in view of new potential pharmacological targets.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Gerard W. O'Keeffe ◽  
Shane V. Hegarty ◽  
Aideen M. Sullivan

Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by the degeneration of midbrain dopaminergic (mDA) neurons and their axons, and aggregation of α-synuclein, which leads to motor and late-stage cognitive impairments. As the motor symptoms of PD are caused by the degeneration of a specific population of mDA neurons, PD lends itself to neurotrophic factor therapy. The goal of this therapy is to apply a neurotrophic factor that can slow down, halt or even reverse the progressive degeneration of mDA neurons. While the best known neurotrophic factors are members of the glial cell line-derived neurotrophic factor (GDNF) family, their lack of clinical efficacy to date means that it is important to continue to study other neurotrophic factors. Bone morphogenetic proteins (BMPs) are naturally secreted proteins that play critical roles during nervous system development and in the adult brain. In this review, we provide an overview of the BMP ligands, BMP receptors (BMPRs) and their intracellular signalling effectors, the Smad proteins. We review the available evidence that BMP–Smad signalling pathways play an endogenous role in mDA neuronal survival in vivo, before outlining how exogenous application of BMPs exerts potent effects on mDA neuron survival and axon growth in vitro and in vivo. We discuss the molecular mechanisms that mediate these effects, before highlighting the potential of targeting the downstream effectors of BMP–Smad signalling as a novel neuroprotective approach to slow or stop the degeneration of mDA neurons in PD.


2020 ◽  
Vol 117 (41) ◽  
pp. 25818-25829
Author(s):  
Xinxing Wang ◽  
Hanxiao Liu ◽  
Johannes Morstein ◽  
Alexander J. E. Novak ◽  
Dirk Trauner ◽  
...  

Hippocampus-engaged behaviors stimulate neurogenesis in the adult dentate gyrus by largely unknown means. To explore the underlying mechanisms, we used tetrode recording to analyze neuronal activity in the dentate gyrus of freely moving adult mice during hippocampus-engaged contextual exploration. We found that exploration induced an overall sustained increase in inhibitory neuron activity that was concomitant with decreased excitatory neuron activity. A mathematical model based on energy homeostasis in the dentate gyrus showed that enhanced inhibition and decreased excitation resulted in a similar increase in neurogenesis to that observed experimentally. To mechanistically investigate this sustained inhibitory regulation, we performed metabolomic and lipidomic profiling of the hippocampus during exploration. We found sustainably increased signaling of sphingosine-1-phosphate, a bioactive metabolite, during exploration. Furthermore, we found that sphingosine-1-phosphate signaling through its receptor 2 increased interneuron activity and thus mediated exploration-induced neurogenesis. Taken together, our findings point to a behavior-metabolism circuit pathway through which experience regulates adult hippocampal neurogenesis.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 583 ◽  
Author(s):  
Tae Yeon Kim ◽  
Eunju Leem ◽  
Jae Man Lee ◽  
Sang Ryong Kim

Oxidative stress reflects an imbalance between the production of reactive oxygen species (ROS) and antioxidant defense systems, and it can be associated with the pathogenesis and progression of neurodegenerative diseases such as multiple sclerosis, stroke, and Parkinson’s disease (PD). The application of antioxidants, which can defend against oxidative stress, is able to detoxify the reactive intermediates and prevent neurodegeneration resulting from excessive ROS production. There are many reports showing that numerous flavonoids, a large group of natural phenolic compounds, can act as antioxidants and the application of flavonoids has beneficial effects in the adult brain. For instance, it is well known that the long-term consumption of the green tea-derived flavonoids catechin and epigallocatechin gallate (EGCG) can attenuate the onset of PD. Also, flavonoids such as ampelopsin and pinocembrin can inhibit mitochondrial dysfunction and neuronal death through the regulation of gene expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Additionally, it is well established that many flavonoids exhibit anti-apoptosis and anti-inflammatory effects through cellular signaling pathways, such as those involving (ERK), glycogen synthase kinase-3β (GSK-3β), and (Akt), resulting in neuroprotection. In this review article, we have described the oxidative stress involved in PD and explained the therapeutic potential of flavonoids to protect the nigrostriatal DA system, which may be useful to prevent PD.


Sign in / Sign up

Export Citation Format

Share Document