The formation of small aggregates contributes to the neurotoxic effects of tau45-230

2021 ◽  
pp. 105252
Author(s):  
Sana Afreen ◽  
Adriana Ferreira
Keyword(s):  
2000 ◽  
Vol 86 (4) ◽  
pp. 149-155 ◽  
Author(s):  
Ana Leonor A. Nencioni ◽  
Fatima F. Carvalho ◽  
Ivo Lebrun ◽  
Valquiria A. Coronado Dorce ◽  
Maria Regina L. Sandoval

2014 ◽  
Vol 45 (S 01) ◽  
Author(s):  
S. Jung ◽  
D. Frey ◽  
F. Brackmann ◽  
M. Richter-Kraus ◽  
R. Trollmann

Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 161
Author(s):  
Irene Deidda ◽  
Roberta Russo ◽  
Rosa Bonaventura ◽  
Caterina Costa ◽  
Francesca Zito ◽  
...  

Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models.


Toxicology ◽  
2021 ◽  
pp. 152785
Author(s):  
Frederick Adams Ekuban ◽  
Cai Zong ◽  
Madoka Takikawa ◽  
Kota Morikawa ◽  
Toshihiro Sakurai ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 669
Author(s):  
Roser Velasco ◽  
Montserrat Alemany ◽  
Macarena Villagrán ◽  
Andreas A. Argyriou

Oxaliplatin (OXA) is a platinum compound primarily used in the treatment of gastrointestinal cancer. OXA-induced peripheral neurotoxicity (OXAIPN) is the major non-hematological dose-limiting toxicity of OXA-based chemotherapy and includes acute transient neurotoxic effects that appear soon after OXA infusion, and chronic non-length dependent sensory neuronopathy symmetrically affecting both upper and lower limbs in a stocking-and-glove distribution. No effective strategy has been established to reverse or treat OXAIPN. Thus, it is necessary to early predict the occurrence of OXAIPN during treatment and possibly modify the OXA-based regimen in patients at high risk as an early diagnosis and intervention may slow down neuropathy progression. However, identifying which patients are more likely to develop OXAIPN is clinically challenging. Several objective and measurable early biomarkers for OXAIPN prediction have been described in recent years, becoming useful for informing clinical decisions about treatment. The purpose of this review is to critically review data on currently available or promising predictors of OXAIPN. Neurological monitoring, according to predictive factors for increased risk of OXAIPN, would allow clinicians to personalize treatment, by monitoring at-risk patients more closely and guide clinicians towards better counseling of patients about neurotoxicity effects of OXA.


2020 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Jie Kang ◽  
Di Wang ◽  
Yongchang Duan ◽  
Lin Zhai ◽  
Lin Shi ◽  
...  

(1) Background: Depression is one of the overwhelming public health problems. Alleviating hippocampus injury may prevent depression development. Herein, we established the chronic unpredictable mild stress (CUMS) model and aimed to investigate whether aerobic exercise (AE) could alleviate CUMS induced depression-like behaviors and hippocampus injury. (2) Methods: Forty-eight healthy male Sprague-Dawley rats (200 ± 20 g) were randomly divided into 4 groups (control, CUMS, CUMS + 7 days AE, CUMS + 14 days AE). Rats with AE treatments were subjected to 45 min treadmill per day. (3) Results: AE intervention significantly improved CUMS-induced depressive behaviors, e.g., running square numbers and immobility time assessed by the open field and forced swimming test, suppressed hippocampal neuron apoptosis, reduced levels of phosphorylation of NMDA receptor and homocysteine in hippocampus, as well as serum glucocorticoids, compared to the CUMS rats. In contrast, AE upregulated phosphorylation of AMPAR receptor and brain-derived neurotrophic factor (BDNF) hippocampus in CUMS depression rats. The 14 day-AE treatment exhibited better performance than 7 day-AE on the improvement of the hippocampal function. (4) Conclusion: AE might be an efficient strategy for prevention of CUMS-induced depression via ameliorating hippocampus functions. Underlying mechanisms may be related with glutamatergic system, the neurotoxic effects of homocysteine, and/or influences in glucocorticoids-BDNF expression interaction.


2021 ◽  
Author(s):  
Adriana Sofranko ◽  
Tina Wahle ◽  
Harm J. Heusinkveld ◽  
Burkhard Stahlmecke ◽  
Michail Dronov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document